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Cavitation Inception

It is conventional to characterize how close the pressure in the liquid flow is to the vapor pressure (and
therefore the potential for cavitation) by means of the cavitation number, σ, defined by

σ =
p∞ − pV (T∞)
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(Nhb1)

where U∞, p∞ and T∞ are respectively a reference velocity, pressure and temperature in the flow (usually
upstream quantities), ρL is the liquid density and pV (T∞) is the saturated vapor pressure. In a particular
flow as σ is reduced, cavitation will first be observed to occur at some particular value of σ called the
incipient cavitation number and denoted by σi. Further reduction in σ below σi would cause an increase
in the number and size of the vapor bubbles.

Suppose that prior to cavitation inception, the magnitude of the lowest pressure in the single phase flow
is given by the minimum value of the coefficient of pressure, Cpmin. Note that Cpmin is a negative number
and that its value could be estimated from either experiments on or calculations of the single phase flow.
Then, if cavitation inception were to occur when the minimum pressure reaches the vapor pressure it would
follow that the value of the critical inception number, σi, would be simply given by

σi = −Cpmin (Nhb2)

Unfortunately, many factors can cause the actual values of σi to depart radically from −Cpmin and much
research has been conducted to explore these departures because of the importance of determining σi

accurately. Among the important factors are

1. the ability of the liquid to sustain a tension so that bubbles do not grow to observable size until the
pressure falls a finite amount below the vapor pressure. The magnitude of this tension is a function of
the contamination of the liquid and, in particular, the size and properties of the microscopic bubbles
(cavitation nuclei ) that grow to produce the observable vapor bubbles (see, for example, Billet 1985).

2. the fact the cavitation nuclei require a finite residence time in which to grow to observable size.

3. the fact that measurements or calculations usually yield a minimum coefficient of pressure that is a
time-averaged value. On the other hand many of the flows with which one must deal in practice are
turbulent and, therefore, nuclei in the middle of turbulent eddies may experience pressures below the
vapor pressure even when the mean pressure is greater than the vapor pressure.

Moreover, since water tunnel experiments designed to measure σi are often carried out at considerably
reduced scale, it is also critical to know how to scale up these effects to accurately anticipate inception
at the full scale. A detailed examination of these effects is beyond the scope of this text and the reader
is referred to Knapp, Daily and Hammitt (1970), Acosta and Parkin (1975), Arakeri (1979) and Brennen
(1995) for further discussion.

The stability phenomenon described in section (Nge) has important consequences in many cavitating flows.
To recognize this, one must visualize a spectrum of sizes of cavitation nuclei being convected into a region
of low pressure within the flow. Then the p∞ in equations (Nge1) and (Nge7) will be the local pressure in
the liquid surrounding the bubble, and p∞ must be less than pV for explosive cavitation growth to occur.
It is clear from the above analysis that all of the nuclei whose size, R, is greater than some critical value



will become unstable, grow explosively, and cavitate, whereas those nuclei smaller than that critical size
will react passively and will therefore not become visible to the eye. Though the actual response of the
bubble is dynamic and p∞ is changing continuously, we can nevertheless anticipate that the critical nuclei
size will be given approximately by 4S/3(pV − p∞)∗ where (pV − p∞)∗ is some representative measure of
the tension in the low-pressure region. Note that the lower the pressure level, p∞, the smaller the critical
size and the larger the number of nuclei that are activated. This accounts for the increase in the number
of bubbles observed in a cavitating flow as the pressure is reduced.

It will be useful to develop an estimate of the maximum size to which a cavitation bubble grows during
its trajectory through a region where the pressure is below the vapor pressure. In a typical external flow
around a body characterized by the dimension, �, it follows from equation ?? that the rate of growth is
roughly given by

dR

dt
= U∞(−σ − Cpmin)
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It should be emphasized that equation (Ngd8) implies explosive growth of the bubble, in which the volume
displacement is increasing like t3.

To obtain an estimate of the maximum size to which the cavitation bubble grows, Rm, a measure of the
time it spends below vapor pressure is needed. Assuming that the pressure distribution near the minimum
pressure point is roughly parabolic (see Brennen 1995) the length of the region below vapor pressure will

be proportional to �(−σ − Cpmin)
1
2 and therefore the time spent in that region will be the same quantity

divided by U∞. The result is that an estimate of maximum size, Rm, is

Rm ≈ 2�(−σ − Cpmin) (Nhb4)

where the factor 2 comes from the more detailed analysis of Brennen (1995). Note that, whatever their
initial size, all activated nuclei grow to roughly the same maximum size because both the asymptotic
growth rate (equation (Ngd8)) and the time available for growth are essentially independent of the size
of the original nucleus. For this reason all of the bubbles in a bubbly cavitating flow grow to roughly the
same size (Brennen 1995).


