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Unsteady Potential Flow

In general, a particle moving in any flow other than a steady uniform stream will experience fluid acceler-
ations, and it is therefore necessary to consider the structure of the equation governing the particle motion
under these circumstances. Of course, this will include the special case of acceleration of a particle in a
fluid at rest (or with a steady streaming motion). As in the earlier sections we shall confine the detailed
solutions to those for a spherical particle or bubble. Furthermore, we consider only those circumstances
in which both the particle and fluid acceleration are in one direction, chosen for convenience to be the x1

direction. The effect of an external force field such as gravity will be omitted; it can readily be inserted
into any of the solutions that follow by the addition of the conventional buoyancy force.

All the solutions discussed are obtained in an accelerating frame of reference fixed in the center of the fluid
particle. Therefore, if the velocity of the particle in some original, noninertial coordinate system, x∗i , was
V (t) in the x∗1 direction, the Navier-Stokes equations in the new frame, xi, fixed in the particle center are
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where the pseudo-pressure, P , is related to the actual pressure, p, by

P = p + ρCx1
dV

dt
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Here the conventional time derivative of V (t) is denoted by d/dt, but it should be noted that in the
original x∗i frame it implies a Lagrangian derivative following the particle. As before, the fluid is assumed
incompressible (so that continuity requires ∂ui/∂xi = 0) and Newtonian. The velocity that the fluid would
have at the xi origin in the absence of the particle is then W (t) in the x1 direction. It is also convenient
to define the quantities r, θ, ur, uθ as shown in the figure in section (Neb) and the Stokes streamfunction
as in equations (Neb4). In some cases we shall also be able to consider the unsteady effects due to growth
of the bubble so the radius is denoted by R(t).

First consider inviscid potential flow for which equations (Neg1) may be integrated to obtain the Bernoulli
equation
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where φ is a velocity potential (ui = ∂φ/∂xi) and ψ must satisfy the equation
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This is of course the same equation as in steady flow and has harmonic solutions, only five of which are
necessary for present purposes:
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The first part, which involves W and D, is identical to that for steady translation. The second, involving
A and B, will provide the fluid velocity gradient in the x1 direction, and the third, involving E, permits
a time-dependent particle (bubble) radius. The W and A terms represent the fluid flow in the absence of
the particle, and the D,B, and E terms allow the boundary condition
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In the absence of the particle the velocity of the fluid at the origin, r = 0, is simply −W in the x1 direction
and the gradient of the velocity ∂u1/∂x1 = 4A/3. Hence A is determined from the fluid velocity gradient
in the original frame as
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Now the force, F1, on the bubble in the x1 direction is given by
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which upon using equations (Neg2), (Neg3) and (Neg6) to (Neg8) can be integrated to yield
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Reverting to the original coordinate system and using v as the sphere volume for convenience (v = 4πR3/3),
one obtains
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where the two Lagrangian time derivatives are defined by
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Equation (Neg14) is an important result, and care must be taken not to confuse the different time deriva-
tives contained in it. Note that in the absence of bubble growth, of viscous drag, and of body forces, the
equation of motion that results from setting F1 = mpdV/dt
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where mp is the mass of the particle. Thus for a massless bubble the acceleration of the bubble is three
times the fluid acceleration.



In a more comprehensive study of unsteady potential flows Symington (1978) has shown that the result
for more general (i.e., noncolinear) accelerations of the fluid and particle is merely the vector equivalent of
equation (Neg14):
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The first term in equation (Neg18) represents the conventional added mass effect due to the particle
acceleration. The factor 3/2 in the second term due to the fluid acceleration may initially seem surprising.
However, it is made up of two components:

1. 1
2
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∗, which is the added mass effect of the fluid acceleration

2. ρCvDUi/Dt
∗, which is a buoyancy-like force due to the pressure gradient associated with the fluid

acceleration.

The last term in equation (Neg18) is caused by particle (bubble) volumetric growth, dv/dt∗, and is similar
in form to the force on a source in a uniform stream.

Now it is necessary to ask how this force given by equation (Neg18) should be used in the practical
construction of an equation of motion for a particle. Frequently, a viscous drag force FD

i , is quite arbitrarily
added to Fi to obtain some total effective force on the particle. Drag forces, FD
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have both been employed in the literature. It is, however, important to recognize that there is no funda-
mental analytical justification for such superposition of these forces. At high Reynolds numbers, we noted
in the last section that experimentally observed added masses are indeed quite close to those predicted
by potential flow within certain parametric regimes, and hence the superposition has some experimental
justification. At low Reynolds numbers, it is improper to use the results of the potential flow analysis.
The appropriate analysis under these circumstances is examined in the next section.


