
3.7.4 Effect of control rod insertion

A second example of a practical modification of the diffusion theory solutions is
to consider a core into which control rods have been partially inserted so that, as
sketched in figure 1, the reactor core consists of two regions with different levels
of neutron absorption. The fractional insertion will be denoted by β. Assuming
that the control rod absorption is sufficiently large so that the conditions in the
controlled region are subcritical the equations governing the neutron flux in the
two regions are
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where subscripts 1 and 2 refer to the two regions indicated in figure 1, L2 is
the neutron diffusion length in region 2 and, for convenience, the origin of z
has been shifted to the bottom of the core. The boundary conditions on the
cylindrical surface r = RE are φ1 = φ2 = 0 (as in section 3.7.1) and on the
radial planes they are

φ1 = 0 on z = 0 ; φ2 = 0 on z = HE ; (3)
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∂φ1
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on z = (1 − β)HE (4)

where, for simplicity, it has been assumed that the neutron diffusivities are the
same in both regions. By separation of variables, the appropriate solutions to

Figure 1: Cylindrical reactor with partial control rod insertion.

equations 1 and 2 are

φ1 = [C1 sin ξ1z + C2 cos ξ1z]J0(2.405r/RE) (5)



φ2 =
[
C3e

ξ2z + C4e
−ξ2z

]
J0(2.405r/RE) (6)

where C1, C2, C3, C4, ξ1and ξ2 are constants as yet undetermined and the
boundary conditions at r = RE have already been applied. The governing
equations 1 and 2 require that

ξ2
1 = B2

g − (2.405/RE)2 ; ξ2
2 = (1/L2)2 + (2.405/RE)2 (7)

The boundary conditions 3 require that

C2 = 0 ; C4 = −C3e
2ξ2HE (8)

and using these with the boundary conditions 4 yields

C1 sin {ξ1(1 − β)HE} = −C3e
ξ2HE

[
eξ2βHE − e−ξ2βHE

]
(9)

ξ1C1 cos {ξ1(1 − β)HE} = ξ2C3e
ξ2HE

[
eξ2βHE + e−ξ2βHE

]
(10)

Eliminating the ratio C1/C3 from these last two expressions yields

ξ2 tan {ξ1(1 − β)HE} + ξ1 tanh {ξ2βHE} = 0 (11)

Since ξ1 and ξ2 are given by equations 7 this constitutes an expression for the
critical size of the reactor, RE (or R) given the aspect ratio HE/RE as well as
Bg , L2 and β. Equivalently it can be seen as the value of β needed to generate
a critical reactor given RE, HE, Bg and L2.

As a non-dimensional example, figure 2 presents critical values for the frac-
tional insertion, β, as a function of the quantity BgRE (which can be thought of
as a non-dimensional size or non-dimensional geometric buckling) for a typical
aspect ratio, HE/RE, of 2.0 and several values of L2/RE. Naturally the critical
size increases with the insertion, β; equivalently the insertion, β, for a critical
reactor will increase with the size given by BgRE. Note that the results are not
very sensitive to the value of L2/RE.

The way in which the neutron flux distribution changes as the control rods
are inserted will become important when the temperature distribution is ana-
lyzed in later chapters. Evaluating the neutron flux in the above solution and
normalizing each distribution in the z direction by the maximum value of φ
occurring within it (denoted by φM ) the distribution becomes:

φ/φM = sin {ξ1z} for 0 ≤ z ≤ (1 − β)HE

=
sin {ξ1(1 − β)HE}
{eξ2βHE − e−ξ2βHE}

{
eξ2(HE−z) − e−ξ2(HE−z)

}

for (1 − β)HE ≤ z ≤ HE (12)

Typical examples of these neutron flux distributions are shown in figure 3; as
the fractional insertion, β, increases note how the neutron flux in the region of
insertion decreases and the distribution becomes skewed toward the lower part
of the core.



Figure 2: The critical non-dimensional size or geometric buckling, BgRE , as a
function of the fractional control rod insertion, β, for a cylindrical reactor with
HE/RE = 2.0 and several values of L2/RE as indicated.

Figure 3: The change in the shape of the axial distribution of the neutron flux,
φ (normalized by the maximum neutron flux, φM), with fractional control rod
insertion, β, for the case of HE/RE = 2.0 and L2/RE = 0.36.


