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Approximate Methods

Having derived the Karman momentum integral equation (KMIE),
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we are now in a position to add to the Blasius and Falkner-Skan solutions by developing approximate
methods for solving the laminar boundary layer equations. These methods utilize approximations to relate
the three unknown functions in the KMIE, namely δD(s), δM(s) and τW (s) and thus reduce the number of
unknown function from three to one. One way in which this has been done to do this is rewrite equation
(Bji1) as
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where the left-hand side is two times the usual skin friction coefficient, cf . Then, to form a differential
equation for δM(s) we define two profile parameters traditionally denoted by T and H and defined by
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The relation of T and H to the velocity profile is shown schematically in Figure 1. It follows that the
equation (Bji2) can be written as (
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If T and H were known, this equation could be solved for δM(s), given U(s). Note that T and H are
functions only of the shape of the velocity profile (see Figure 1) and therefore of the dimensionless velocity
profile
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though they will also normally be functions of s.

The approximate methods described here are based on the judgment that the results are not very sensitive
to the precise shape of the velocity profile as long as that profile satisfies the basic boundary conditions
which are usually:

• u = 0 at n = 0

• u → U as n → ∞
though variations occur, for example if the solid surface is moving or is porous. Sometimes simple approx-
imate velocity profile shapes are assumed, for example, one of the Blasius or Falkner-Skan profiles. Once
the profile shape has been assumed and the form of the function (Bji6) is known, numerical values of T
and H follow from the definitions (Bji3) and (Bji4). For example, for the Blasius profile T = 0.221 and



Figure 1: Relation between T, H and λ and the boundary layer profile.

H = 2.59. Therefore, if the velocity profile shape was the same for all s (as it would be for the Blasius and
Falkner-Skan flows), equation (Bji5) would then be fully defined and we could proceed to a solution for
those known and fixed values of T and H. However, even this objective is not readily achieved analytically
except when U is some simple function of s.

The next step is to decide on a family of approximate velocity profile shapes that will cover the variety
of shapes that occur with accelerating and decelerating external flows. A variety of parametric shapes
have been suggested, some governed by more than one parameter. However, since most of those more
complex methods have been made obsolete by the availability of computational fluid dynamics methods
for the solution not only of boundary layer flows but also for the external flow, we will confine the present
discussion to velocity profile families governed by a single parameter. The best known of these is the
method presented by Thwaites (1960) who observed that T and H are close to being functions only of the
variable, λ, where
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where Thwaites obtained the functions T (λ) and H(λ) shown in Figure 2 from a combination of experi-
mental data and the Blasius and Falkner-Skan solutions. Note that λ can be related to the Falkner-Skan
index m by observing that, in the Falkner-Skan solution,
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where f(m) is some function of m and therefore λ is a function only of m and not of s. That functional
relation is plotted in Figure 2. Thus, using λ as surrogate for m, Thwaites’ approximate method deploys
the Falkner-Skan family of velocity profiles. The Karman momentum integral equation (Bji5) is written as
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and Thwaites found that, empirically,

T − λ(H + 2) ≈ 0.225 − 3λ and T ≈ (λ + 0.09)0.62 (Bji10)

so that equation (Bji9) could be approximated by
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Figure 2: Thwaites relations for T (λ) and H(λ).

Integration yields the approximate solution for the momentum thickness
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so that, given the external velocity, U(s), and the momentum thickness, δs0 at one location, s0, the
momentum thickness at any downstream location can be estimated. Once δM(s) has been obtained, λ(s),
T (s) and H(s) follow from the relation (Bji7) and Figure 2. Consequently the other boundary layer
properties, δD(s) and τW (s) follow from T (s) and H(s).

At this point some simple examples are is appropriate. The simplest is, of course, the Blasius case in
which U is constant and, when δs0 = 0, it follows from equation (Bji12) that δM = 0.671(νs/U)

1
2 which

is satisfactorily close both in numerical value and functional dependence to the actual Blasius solution,
δM = 0.664(νs/U)

1
2 . This is not, however, surprising since Thwaites used the Blasius solution as one of

his benchmarks. Other examples are, of course, the Falkner-Skan flows with U = Csm for which equation
(Bji12) yields:
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This has the same functional dependence as indicated in equation (Bjf6a).

It should emphasized again that these approximate methods have been largely replaced by numerical
solutions of the laminar boundary layer equations. Perhaps the most valuable usage of the Thwaites
method is to provide a straightforward analytical method of estimating the point of separation of a laminar
boundary layer. As we have previously documented, the Falkner-Skan profile at separation has an m value
of −0.0904. This corresponds to values of λ = −0.09 (T = 0 and H = 3.5). Therefore, to make an estimate
of the location of laminar boundary layer separation the integration in equation (Bji12) should continue
until the s location at which that critical value of λ (or T = 0) is encountered.


