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Effect of Friction in Duct Flows

Having described some of the properties and phenomena for steady isentropic duct flows, it is appropriate
to digress to described the non-isentropic effects caused by the viscous, frictional effects in ducts since such
effects are often of practical importance. Such frictional effects are irreversible, and the flow is therefore
non-isentropic. The set of basic equations that are pertinent to any one-dimensional duct flow of a perfect
gas through a pipe or duct of constant cross-sectional area, whether that flow is isentropic on non-isentropic,
are

• Continuity:
ρuA = constant (Bog1)

where, in the present context, A is constant.

• Momentum: See below.

• Energy:

h∗ = cpT +
u2

2
= constant (Bog2)

• State:
p = ρRT (Bog3)

and, in differential form, these can be written as

• Continuity:
du

u
+

dρ

ρ
= 0 (Bog4)

• Energy:

cpdT + udu = 0 or
dT

T
+ (γ − 1)M2 du

u
= 0 (Bog5)

• Momentum:

dp + ρudu +
ρu2f

2d
dx = 0 (Bog6)

where f is the friction factor of the flow in the duct (assumed known and uniform) and d is the
diameter of the duct (see section (Bfc) for information on the friction factor).

• State:
dp

p
− dρ

ρ
− dT

T
= 0 (Bog7)

Note that if the friction factor, f , were set equal to zero these would revert to the set of equations used
for steady isentropic duct flow in section (Boe).

Then, using M2 = u2/c2 = u2/γRT , and eliminating du, dT , dρ and dp from equations (Bog4), (Bog5),
(Bog6) and (Bog7) we obtain the relation

f

d
dx =

{
1 − M2

γM2

} {
1 +

(γ − 1)M2

2

}−1
d(M2)

M2
(Bog8)



which clearly defines the change in the Mach number in the flow through the duct that results from the
effects of friction described by the friction factor, f . Note that for subsonic flow the Mach number increases
with distance along the duct whereas for supersonic flow it decreases. Thus the friction has an effect which
is similar to a decreasing cross-sectional area in a flow of varying cross-sectional area. And, moreover,
there cannot be any location within the duct where M = 1. Therefore, we must draw conclusions similar
to those we reached in section (Bof). Either the flow in the duct is entirely subsonic (or supersonic) or the
flow reaches a Mach number of unity at the end of the duct where, in effect, the flow is choked due to the
effect of friction.

Integrating equation (Bog8) (assuming f remains constant) leads to

f

d

∫ x

0

dx =
fx

D
=

∫ M

M1

{
1 − M2

γM2

}{
1 +

(γ − 1)M2

2

}−1
d(M2)

M2
(Bog9)

Given M1 (as well as f , D, and γ) this equation yields the Mach number, M , at any location within the
duct. Then, with M determined, the following relations derived from equations (Bog2), (Bog1) and (Bog3)
allow the velocity, temperature, density and pressure to be evaluated relative to the hypothetical values at
M = 1 (whether or not that point actually occurs in the flow) :

T

T ∗ = 1 +
(γ − 1)

2
(1 − M2) (Bog10)

u

u∗ =
ρ∗

ρ
= M

{
T

T ∗

} 1
2

(Bog11)

p

p∗
=

ρ

ρ∗
T

T ∗ (Bog12)

The most convenient way to analyze the effects of friction in the steady flow in a duct of uniform crocc-
sectional area is to consider a hypothetical extension to the pipe to x = L∗ as shown in Figure 1. The flow
at the discharge from this extension is assumed to be choked (M = 1). Then integrating equation (Bog5)

Figure 1: Duct with hypothetical extension to sonic conditions.

(assuming f remains constant) leads to

f

d

∫ L

0

dx =
fL

d
=

∫ M2

M1

{
1 − M2

γM2
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1 +

(γ − 1)M2

2
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d(M2)

M2
(Bog13)

where M1 and M2 are the Mach numbers at inlet to and discharge from the actual duct. Given M1 (as
well as f , D, L and γ) equation (Bog13) provides the value of M2. Moreover, since M = 1 at x = L∗ it
also follows that

fL∗

d
=

∫ 1

M1

{
1 − M2

γM2
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2

}−1
d(M2)

M2
(Bog14)



The most convenient way to solve these relations is to define a function, F (M), such that

F (M) =

∫ 1

M

{
1 − M2

γM2

} {
1 +

(γ − 1)M2

2

}−1
d(M2)

M2
(Bog15)

It follows that
fL∗

d
= F (M1) (Bog16)

from which, given M1, L∗ can be determined. Then, knowing (L∗ − L), M2 can be determined from

f(L∗ − L)

d
= F (M2) (Bog17)

Moreover, at any general point in the duct, x, the Mach number, M , can be determined from f(L∗−x)/d =
F (M).

For these purposes F (M) is tabulated in Figure 3 and plotted in Figure 2. The next step is to determine
the velocity ratios, u/u∗, the temperature ratios, T/T ∗, the density ratios, ρ/ρ∗, and the pressure ratios,
p/p∗ at any point (whether x = 0, x = L or any general location within the duct) using equations (Bog10),
(Bog11) and (Bog12) and the Mach number at any of these points. A sample is provided in Figure 2 where
the ratios u1/u

∗, T1/T
∗, ρ1/ρ

∗, and p1/p
∗ are plotted against the inlet Mach number, M1; this data would

allow u∗, T ∗, ρ∗, and p∗ to be determined given u1, T1, ρ1, and p1.

Figure 2: Graphs of fL∗/d, T1/T ∗, u1/u∗ and p1/p∗ against inlet Mach number, M1.



Figure 3: Tabulated values of fL∗/d, T1/T ∗, u1/u∗ and p1/p∗ against inlet Mach number, M1.


