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Isentropic Duct Flows

In this section we examine the behavior of isentropic flows, continuing the development of the relations in
section (Bob). First it is important to identify the set of basic relations that will be used for isentropic,
reversible flow and those that are relevant to non-isentropic, irreversible flows that will be the subject of
the next section (Bof). In the latter case, one-dimensional flows are governed by equations for

e Continuity
o Momentum
e FEnergy

o State

and these are to be solved for the four unknowns, u, p, p and T with specific versions of the equations
described in section (Bof). However, with steady, reversible, isentropic flows, the momentum and energy
equations have already been used in section (Bob) to derive the isentropic relations and hence the simpler
set of four equations that will be further utilized in this section to document the steady, isentropic flow of
velocity, u, pressure, p, temperature, 7', and density, p, in a duct of cross-sectional area, A(s), are

e Continuity: puA = constant

e Energy: total enthalpy, h* = constant which becomes ¢,T + u*/2 = constant
o State: p = pRT

e [sentropic Relation: pp~™7 = constant

Reworked using the definition of the speed of sound and the Mach number, M = u/c, this set of equations
can be written as

Continuity:  puA = constant (Boel)
Energy: T {1 + %;UJ\/P} = constant = Tj (Boe2)
State and Isentropic Relations:
p {1 + @M2}v/(7_1) = constant = py (Boe3)
p {1 + 4l ; D M2}1/(7_1) = constant = po (Boe4)

where Ty, po and pg are called stagnation or reservoir reference quantities since they pertain to conditions
where the velocity is zero.

To further develop these relations we write the continuity equation (Boel) as
puA = pMcA = pM(yRT)?A = constant (Boeb)
and therefore, using the energy equation (Boe2) to substitute for 7',

1
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— {1 + MM2 = constant (Boeb)
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Thus we can compare two locations along the duct denoted by the subscripts 1 and 2 to write

which directly relates the areas and Mach numbers of the flows at those two locations.

We have already introduced one reference state, namely the stagnation or reservoir state and, in assessing
or calculating isentropic duct flows, it is often convenient to evaluate that reference state as a part of the
calculation whether or not that particular state actually occurs in the flow. In other words we evaluate
Th, po and py whether or not there is a stagnation point or reservoir in the flow. Furthermore, there is a
second reference state which is useful to establish namely the state at the point where the Mach number
is unity and the flow is sonic. We shall later discover the physical relevance of this possible location or
reference point. For the present, we only need establish that if there is a location within the duct where
M = 1 then the pressure, temperature, density and area at that location are denoted by p*, T, p* and
A* respectively. For reasons that will emerge later this state is called the throat reference state and the
conditions at that location are termed the throat pressure, temperature and density. By setting M =1 in
equations (Boe2) to (Boe4) the throat conditions can be established as

o { 9 }v/(v—l) T { 2 } P { 2 }1/ o= (Bocg)
Po (v+1) Ty (v+1) Po (v+1)

and for air with v = 1.4 these yield p*/py = 0.528, T /T = 0.634 and p*/py = 0.833. Furthermore, it is
often useful to relate the conditions at some arbitrary location given by a Mach number, M, to the throat
conditions and the relations for this purpose also follow from equations (Boe2) to (Boe4) and (BoeT) as

e [t

Z% _ {w] v/(v—1) {1 . @Mﬂ —v/(v=1) (Boelo)

% _ {(’y —21- 1)}1/(“1—1) {1 . %;1)]\/[2} —1/(v—1) (Boel1)

% _ {1 . @Mﬂ (v+1)/2(v—=1) PTH} —(v+1)/2(v-1) (Boe12)

>k A*
- {p—}{—} (Boel3)
u* p A
where the last result follows from the continuity equations and equations (Boell) and (Boel2).

In Figures 1 and 2 the quantities A/A*, T' /Ty, p/po, p/po, T/T*, p/p*, p/p*, and u/u* are tabulated against
M for air (v = 1.4, R = 280 m?/s*K°). The values of T'/Ty, p/po, and p/pg are also plotted against M in
Figure 3 and the value of A/A* is plotted in Figure 4.
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Figure 1: Table of ratios for isentropic duct flows.
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Figure 2: Table of ratios for isentropic duct flows.

P/po P/Po TIT* plp* p/p* ulu®

0.1492
0.1381
0.1278
0.1182
0.1094
0.1011
0.0935
0.0865
0.08
0074
0.0684
0.0633
0.0585
0.0542
0.0501
0.04564
0.043
0.0398
0.0368
0.0341
0.0317
0.0293
0.0272
0.0131
0.0066
0.0035
0.0019
0.0011
0.0006
0.0004
0.0002
0.0002
0.0001
7E-05
SE-05
3E-05
2E-05

0.257
0.2432
0.23
0.2176
0.2058
0.1946
0.1841
0.174
0.1645
0.1556
0.1472
0.1382
0.1317
0.1245
0.1179
0.1115
0.1056
0.0999
0.0946
0.0896
0.0849
0.0804
0.0762
0.0452
0.0277
0.0174
0.0113
0.0076
0.0052
0.0036
0.0026
0.0019
0.0014
0.0011
0.0008
0.0006
0.0005

0.6965
0.6816
0.6667
0.652
0.6376
0.6235
0.6098
0.5963
05831
0.5702
0.5576
0.5453
05333
05216
0.5102
0.4991
0.4882
0.4776
0.4673
0.4572
0.44274
0.4379
0.4286
0.3478
0.2857
0.2376
0.2
0.1702
0.1463
0.127
0.1111
0.098
0.087
0.0777
0.0698
0.063
0.0571

0.2825
0.2615
0.2419
0.2238
0.207
0.1914
0177
0.1637
0.1514
0.14
0.1285
0.1198
0.1108
0.1025
0.0949
0.0878
0.0813
0.0753
0.0698
0.0646
0.0599
0.0556
0.0515
0.0248
0.0125
0.0065
0.0036
0.002
0.0012
0.0007
0.0005
0.0003
0.0002
0.0001
SE-05
6E-05
4E-05

0.2054
0.3836
0.3629
0.3433
0.3246

0.307
0.2903
0.2745
0.2596
0.2455
0.2322
0.2196
0.2077
0.1965
0.1855

0.176
0.1665
0.1576
0.1493
0.1214
0.1335
0.1265
0.1202
00714
0.0436
0.0275
0.0179

0.012
0.0082
0.0057
0.0041

0.003
0.0022
0.0017
0.0013

0.001
0.0008

1.5861
1.609%

1633
1.6553
1.676%
1.6977
1.7179
1.7374
1.7563
1.7745
1.7922
1.8092
1.8257
1.8417
18571
18721
1.6865
1.9005

1914
1.9271
1.9398
19521

1964
2.0642
2.1381
2.1936
2.2361
2.2691
2.2953
2.3163
23333
2.3474
2.3591
2.3689
2.3772
2.3843
2.3905
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Figure 3: Graphs of T/Ty, p/po, and p/py against Mach Number, M.
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Figure 4: Graph of A/A* against Mach Number, M.



There are several important properties of the data in Figures 1, 2, 3 and 4 that need to be identified
and analyzed. Note first that the tables and graphs cover both subsonic (M < 1) and supersonic (M > 1)
flow and, in this analysis, it will be convenient to use the name nozzle for a duct whose cross-sectional
area, A, is decreasing in the direction of flow and the name diffuser for one whose area is increasing in
the direction of flow. Then the data exhibit the following trends for the four options illustrated in Figure

\
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Figure 5: Variations of flow properties in a nozzle and a diffuser.

5: Subsonic flow in a nozzle will feature a flow in which the velocity, u, and Mach number, M, increase
in the direction of flow while the pressure, temperature and density decrease. In contrast supersonic flow
in a nozzle will feature a velocity, u, and Mach number, M, that decrease in the direction of flow while
the pressure, temperature and density increase. [Perhaps it seems strange to envisage a nozzle in which
the velocity is decreasing in the direction of the flow because conservation of mass appears to be violated
but, in fact, mass conservation is satisfied because the density is increasing faster than the velocity is
decreasing.| As depicted by the matrix in Figure 5, a diffuser will exhibit trends that are the reverse of
those in a nozzle.

But the trends depicted in Figure 5 raise another set of questions. What happens in a subsonic nozzle flow
when the Mach number reaches unity and the area continues to decrease? What happens in a supersonic
diffuser as the area continues to increase? Does the flow continue to accelerate indefinitely? We will
address the first issue in the next section and the other issues after we have identified and analyzed the
phenomenon of a shock wave.



