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Oblique Shock Wave

Figure 1 depicts a large compression deflection and clearly demonstrates why this is different from a large
expansion deflection. The Mach waves from a gradual compression deflection will intersect forming a

Figure 1: Supersonic flow performing a large compressive deflection, θ.

caustic across which the changes in the velocity, Mach number, pressure, temperature and density are no
longer small. This caustic structure is an oblique shock wave and when the flow is viewed from a perspective
far from the deflection, this oblique shock wave appears to emanate from the vertex as depicted in Figure
2. Moreover, since the changes across the oblique shock wave are no longer small, this feature of the flow

Figure 2: Supersonic flow performing a large compressive deflection, θ.

is non-isentropic.

We return to the basic conservation laws in order to construct (1) the inclination of the oblique shock
wave, β, due to a finite deflection angle, θ, and (2) the relations between the flow properties ahead of and



behind an oblique shock as a function of the upstream Mach number, M1, and the angle, θ. To do so we
will consider the components of the velocity normal to the oblique shock (denoted by qN) and tangential
to the shock (denoted by qT ) both upstream of the shock (subscript 1) and downstream (subscript 2) as
depicted in Figure 3.

Figure 3: Notation for the oblique shock wave analysis.

• Continuity:
ρ1qN1 = ρ2qN2 (Bom1)

since the shock is assume infinitely thin and therefore the area of the flow is the same on both sides.

• Momentum normal to the shock:
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• Momentum tangential to the shock:

ρ1 qN1 qT 1 = ρ2 qN2 qT 2 so qT 1 = qT 2 (Bom3)

using the continuity equation (Bom1).
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using the continuity equation (Bom1).
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These relations are utilized as follows. First by eliminating all but θ, M1 and β, the following equation
emerges:

tan θ =
2cot β(M2

1 sin2 β − 1)

{2 + (γ + cos 2βM2
1 )} (Bom6)

Given θ, M1 and γ this allows evaluation of the shock angle, β. The graph in Figure 4 was constructed
using this equation (Bom6). Notice that for a given upstream Mach number, M1, and a given deflection
angle, θ, there are two values of the shock angle, β, that are possible solutions. We delay discussion on
this until the other pertinent results are identified.



Figure 4: Data for oblique shock waves.

The second key result to emerge from the above set of equations is for the downstream Mach number, M2,
in terms of the upstream Mach number, M1, θ, β, and γ:

M2
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2γM2
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(Bom7)

Careful examination of this relation shows that it is identical with the relation for M2
2 for the normal shock

(equation (Boh9)) except that

• M1 sinβ has replaced M1 and

• M2 sin (β − θ) has replaced M2

Therefore in order to calculate M2 for an oblique shock the following steps should be followed

1. Obtain the shock angle, β, from the graph in Figure 4 using M1 and the deflection angle, θ.

2. Calculate M1 sinβ

3. Use the normal shock wave table in Figure 9 of section (Boh) with the column labeled M1 relabeled
M1 sinβ to look up the value of M2 which is now interpreted as M2 sin (β − θ) and from this calculate
M2.

4. Use the same line of the table (Figure 9 of section (Boh)) to look up the pressure, temperature and
density ratios across the oblique shock wave. Alternatively use
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We note the following features of the oblique shock solution:

• As the shock angle, β, approaches π/2, the deflection angle, θ, tends to zero and the shock becomes
a normal shock with M1 sin β → M1 and M2 sin (β − θ) → M2.

• As the deflection angle, θ → 0, either (i) β → π/2 which is the above limit or (ii) M2
1 sin2 β → 1 and

therefore β → arcsin(1/M1); in other words it becomes a Mach wave.

• In Figure 4, it is evident that for a given upstream Mach number, M1, and a given deflection angle,
θ, there are two values of the shock angle, β, that represent possible oblique shock configurations.
The configurations in the lower part of Figure 4 shown by solid lines are characterized by downstream
supersonic flows with M2 > 1 and smaller shock angles, β. In contrast, the configurations in the
upper part of Figure 4 shown by dashed lines are characterized by downstream subsonic flows with
M2 < 1 and larger shock angles, β. The dividing line between these two regimes is almost the locus
of the vertical tangents in Figure 4 but lies just below it. The two shock types are known as a weak
oblique shock when M2 > 1 and a strong oblique shock when M2 < 1. The pressure increase across a
strong oblique shock is much larger than across a weak shock and hence the terminology. Whether a
strong or weak shock occurs depends on the downstream conditions imposed on the flow. It is also
important to recognize that the supersonic flow downstream of a weak shock must conform with the
inclination of the wall downstream of the shock. On the other hand the subsonic flow downstream
of a strong shock does not necessarily have to conform with the wall inclination. In fact the θ for
a strong shock represents the inclination of the flow as it exits the shock and could be significantly
smaller than the inclination of the wall. Consequently, completion of a strong shock solution requires
the complex solution of the subsonic flow downstream of the shock.

• Note that for a given upstream Mach number, M1, there is a maximum possible angle of deflection of
the flow, θmax. This is particularly evident when contemplating the solution for a wedge of half-angle,
θ, placed symmetrically in a supersonic flow. When θ < θmax oblique shocks emanate from the vertex
of the wedge. However, if θ > θmax the shock detaches from the vertex and becomes a “detached”
shock wave placed some distance upstream of the vertex. Where it crosses the midline or line of
symmetry it is, locally, a normal shock wave. Downstream of that detached shock the flow is subsonic
and adjusts itself (and the position of the detached shock) to conform with the wedge geometry.

Figure 5: Supersonic flow past a flat plate at a substantial angle of attack.

• The large deflection angle versions of the various flows discussed in section (Boi) can now be con-
structed by substituting Prandtl-Meyer fans for the expansion Mach waves and oblique shock waves
for the compression Mach waves. Thus, for example, the flow past a flat plate airfoil at a larger angle
of attack becomes as depicted in Figure 5 and cases with given upstream Mach numbers and angles
of attack can be analyzed for their lift and drag coefficients.



• The reflection of an oblique shock from a solid wall is somewhat similar to the reflection of a Mach wave
delineated in section (Bok) except that the angle of reflection is not equal to the angle of incidence
and needs to be calculated as in the following example depicted in Figure 6. Suppose that an oblique

Figure 6: Oblique shock reflection.

incident shock with Mach number M1 = 3.0 is inclined at an angle of β1 = 30o to a wall parallel with
the incident flow in region 1. With this input, the angle between the wall and the direction of the flow
exiting the incident shock is 12.7o according to Figure 4. This must also be the angle through which
the flow is deflected in the reflected shock in order for the flow in region 3 to be parallel with the
wall. Moreover, using the value of M1 sinβ1 = 1.5 and equation (Bom7) it transpires that M2 = 2.36.
Subsequently with M2 = 2.36 and a deflection angle of 12.7o, Figure 4 indicates that the inclination
of the reflected shock to the direction of flow in region 2 must be 37o. Hence the inclination of the
reflected shock with the wall must be (37 − 12.7) = 24.3o and the Mach number in region 3 is 1.78.
Thus the angle of the reflected shock relative to the wall (in this case 24.3o) is smaller than the
inclination of the incident shock (30o); in contrast the angles were the same for a Mach wave.

• Another example of the “reflection” of an oblique shock wave occurs when oblique shock waves in-
tersect. A useful example of such an interaction occurs in the processes that take place downstream
of a over-expanded nozzle (Figure 7) as defined in section (Boi). As the external pressure is lowered
below that at which a normal shock wave forms at the exit from the nozzle, that normal shock wave
deforms outward into oblique shock waves emanating from the edge of the exit from the nozzle as
shown in Figure 7. These oblique shock waves provide the mechanism by which the pressure increases
to that downstream of this adjustment process. The intersection of the two oblique shock waves on

Figure 7: Oblique shock formation in the discharge from an over-expanded nozzle.

the centerline of nozzle is identical in form to the reflection of one of the oblique shocks if a solid wall
were substituted for the plane of symmetry.


