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One-Dimensional Isentropic Flow

Consider the relations that govern the one-dimensional steady, isentropic flow of a perfect gas in any
pipe, duct or streamtube as sketched in Figure 1. The assumption of isentropic flow necessarily implies
(1) that there is no heat addition to or removal from the flow and (2) that the flow is assumed to be
thermodynamically reversible and therefore that all viscous or other irreversible effects are being neglected.
We will return later to investigate both viscous effects and heat exchange effects in a real pipe or duct
flow. The following conservation laws must apply to this steady one-dimensional flow:

Figure 1: Any pipe, duct or streamtube.

• Conservation of mass requires that
ρuA = constant (Bob1)

where A(s) is the cross-sectional area of the streamtube (a function of the coordinate, s, measured
along the centerline of the streamtube) and ρ(s) and u(s) are the density and velocity of the flow
averaged over that cross-section. Differentiating this leads to

ρudA + uAdρ + ρAdu = 0 (Bob2)

• The one-dimensional momentum equation requires that
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where p(s) and z(s) are respectively the pressure and elevation averaged over the cross-section, A(s).
Note for comparison that the corresponding incompressible flow in which ρ is a constant allows
equation (Bob3) to be written as
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which leads to Bernoulli’s equation that states that the quantity in parentheses is a constant along
any streamline. However, for the compressible flow that is the subject of this section equation (Bob3)
leads to

ρudu + ρgdz + dp = 0 (Bob5)



• Since the flow is isentropic it follows from the thermodynamic definition of the specific enthalpy, h,
that
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Combining equations (Bob5) and (Bob6) it follows that in steady, isentropic, one-dimensional flow
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and therefore the total enthalpy, h∗, is constant along any streamline in such flow. Note that in most
of the high speed flows with which we will be concerned in these sections, the gravitational term, gz,
is negligible and will be omitted.

• For a perfect gas we also have

p = ρRT and h = cpT + constant (Bob7)

and the isentropic relations
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As an example of the application of these relations, consider the steady. isentropic flow around an airplane
in a frame of reference fixed in the plane. Equation (Bob6) for a perfect gas without the gravitational term
becomes
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along any streamline. Consider, therefore the streamline connecting the flow far upstream of the plane
(where the velocity is u = U∞ and the temperature is denoted by T∞) with the stagnation point on the
nose of the plane where u = 0 and the temperature is denoted by TS. From equation (Bob9) it follows that
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We shall see in the section which follows that γRT is the square of the speed of sound, c, so that equation
(Bob10) becomes
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where M∞ is the Mach number of the plane, U/c.

For numerical examples we take air whose R = 280 m2/s2Ko, γ = 1.4 and cp = 980 m2/s2Ko. Then
at u ≈ 300m/s equation (Bob11) yields a temperature difference between the stagnation point and far
upstream, TS − T∞ of about 50oK. An aluminium fuselage can withstand such a temperature. Even at
a speed of 500m/s the temperature difference is a manageable 120oK. But at 1500m/s the temperature
difference becomes 1000oK and an aluminum skin is no longer possible. Airplanes at those kinds of speeds
require titanium or carbon fiber skins.


