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Macroscopic form of continuity

The simplest context in which to apply the principle of conservation of mass is to an internal flow
confined within some solid vessel or collection of pipes and in which the flows into and out of that vessel
is simply characterized (or approximately characterized). Consider, for example, the solid-walled tank
depicted in figure 1 that has three pipes connected to it, labelled A, B and C . For the purpose of the
present analyses we choose a control volume that encloses the entire vessel and cuts across the inlet and
exit pipes as shown by the red, dashed line in the figure.

Figure 1: Macroscopic Eulerian control volume.

We denote the mass of the fluid inside the control volume by M , the velocity, density and cross-sectional
area of pipe A at the point where the CV cuts across that pipe by uA, ρA and AA respectively. We similarly
characterize the flow through pipes B and C (at the points where the CV cuts across those pipes) by the
subscripts B and C . These flow velocities are denoted as positive when directed out of the vessel.

Since according to the principle of conservation of mass, fluid mass cannot be created or destroyed, it
follows that the rate of flow of mass into the control volume must be equal to the rate of increase of mass
within the control volume. The latter quantity is readily represented by the time derivative, dM/dt (note
that this time derivative is unambiguous since M is a function only of time and not of position). On the
other hand the rate of flow of mass into the control volume requires a little more construction.

The block of fluid that would cross the surface of the control volume at location A in a time δt has a
volume equal to uAAAδt and therefore the rate of flow of volume (the volume flux) across that part of the
control volume surface is uAAA. Hence the the rate of flow of mass (the mass flux) across that part of the
control volume surface is ρAuAAA. Recalling the sign convention for the velocities it follows that the rate
at which mass is entering the control volume is given by

−ρAuAAA − ρBuBAB − ρCuCAC = −
all∑

a=A

ρauaAa (Bcc1)

where the extension to the summation over all conduits into and out of the control volume is obvious. In
passing we note that we have implicitly assumed that at the location A the velocity, uA and density, ρA



are uniform over the area AA (and similarly for the other locations). If this is not the case it is clear that
the simple forms developed above will have to be replaced by integrals over the areas such as AA. This is
essentially what is done in the integral approach described later.

It follows that, in this example, conservation of mass requires that

dM

dt
+ ρAuAAA + ρBuBAB + ρCuCAC = 0 (Bcc2)

or, more generally, that

dM

dt
+

all∑

a=A

ρauaAa = 0 (Bcc3)

and this is a form in which conservation of mass is invoked in a wide range of applications. If the fluid can
be considered incompressible then the densities in all of the terms of the above equation are identical and
the continuity equation therefore reduces to

dV

dt
+

all∑

a=A

uaAa = 0 (Bcc4)

where V is the volume of the fluid inside the control volume. If the vessel and pipes are rigid this volume
V cannot change with time and so the continuity equation is further reduced to

all∑

a=A

uaAa = 0 (Bcc5)

This would also be the case if the flow were steady (dV/dt = 0) even if the vessel and pipes were not rigid.
This particularly simple form of the continuity equation is, perhaps, the most commonly used version in
practical applications. It simply states that the volume flow rate in must equal the volume flow rate out.
Perhaps the commonest example is the simple steady duct flow shown in figure 2 for which

ρAuAAA = ρBuBAB (Bcc6)

Figure 2: A simple steady duct flow.


