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Continuity equation in other coordinate systems

We recall that in a rectangular Cartesian coordinate system the general continuity equation is
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or in tensor notation
∂ρ

∂t
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= 0 (Bce2)

or in vector notation
∂ρ

∂t
+ ∇.(ρu) = 0 (Bce3)

If the flow is planar, the velocity and the derivatives in one direction (say the z-direction) become zero
and the continuity equation reduces to
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and if the flow is incompressible this is further reduced to
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∂x
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∂v
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= 0 (Bce5)

a form that is repeatedly used in this text.

In a planar flow such as this it is sometimes convenient to use a polar coordinate system (r, θ). Then the
continuity equation becomes
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where ur, uθ are the velocities in the r and θ directions. If the fluid is incompressible this further reduces
to

∂(rur)

∂r
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∂θ
= 0 (Bce7)

and, in the very simple circumstances in which the flow is purely radial so that uθ = 0, it follows that

∂(rur)

∂r
= 0 (Bce8)

and therefore ur = C/r where C is a constant or only a function of time. This is the flow field for a simple
”line source or sink” at r = 0 which is perpendicular to the plane of r and θ. We will discuss these flows
elsewhere in this book.

Another simple planar flow that is valuable to identify is one in which the vortical flow in which ur is
everywhere zero and the flow proceeds in a circular path. Then the continuity equation for incompressible
flow becomes

∂uθ

∂θ
= 0 (Bce9)



and therefore uθ is a function only of r and t. There are several specific types of vortical motion that are
discussed elsewhere in this book.

Reverting to the more general three-dimensional flow, the continuity equation in cylindrical coordinates
(r, θ, z) is
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where ur, uθ, uz are the velocities in the r, θ and z directions of the cylindrical coordinate system. A
particular subset of such flows is axisymmetric flow in which the derivatives in the θ direction are zero so
that the continuity equation becomes
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where ur, uθ, uz are the velocities in the r, θ and z directions of the cylindrical coordinate system. For
incompressible axisymmetric flow it follows that the continuity equation becomes
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Another subset is vortical flow about the z axis (with no flow in the z direction) in which case the continuity
equation becomes
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Turning now to spherical coordinates (r, θ, φ) the continuity equation becomes
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and in some particular flows in which this simplifies further. In purely radial flow such as that due to a
point source or a sink (as opposed to the line source or sink described above) it becomes
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For incompressible flow this reduces to
∂(r2ur)

∂r
= 0 (Bce16)

and therefore ur = C/r2 where C is only a function of time. Clearly this can be arrived at by arguing
that for an incompressible fluid the spherical surface area times the radial velocity must be the same at
all radii.


