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RAYLEIGH AND EKMAN FLOWS

Some valuable exact solutions to the Navier-Stokes equations involve planar flows in a viscous, incompress-
ible fluid (with constant and uniform viscosity) bounded by a single flat plate that moves in its own plane
as depicted in Figure 1. Two classic solutions will be presented here. In the first the fluid is initially at

Figure 1: Rayleigh and Ekman flows.

rest and the plate begins to move with a constant velocity, U , in its own plane at time, t = 0. This is
known as Rayleigh flow. In the second the plate is oscillating with velocity, U = U∗ sin f̂ t, in its own plane
with radian frequency, f̂ . This is known as Ekman flow. Indeed other solutions of this type are viable, for
example, U = U∗eαt. We begin by delineating the equations that apply to this whole class of flows.

Since the flow at every x location is the same, it must be true that uy = uz = 0 and ∂p/∂x = 0 and
therefore these uni-directional flows must satisfy the following Navier-Stokes equation for ux(y, t):
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which is a diffusion equation featuring a diffusivity of ν. Since the vorticity, ω, in these flows is
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it follows that the vorticity satisfies a similar diffusion equation:
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Indeed this illustrates the typical process of diffusion that vorticity satisfies. We now examine the particular
solutions, starting with Ekman flow and proceeding to Rayleigh flow.

Ekman flow is solved by deploying separation of variables to write the solution to equation (Bif1) in the
form

ux = F (y)G(t) (Bif4)

where, after substitution into equation (Bif1), the initially unknown functions, F (y) and G(t), are found
to satisfy
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where k is an arbitrary constant. Solving these two implied ordinary differential equations it follows that

ux = {C1 sin (kt) + C2 cos (kt)}
{
C3 e(k/ν1/2)y + C4e

−(k/ν1/2)y
}

(Bif6)



where C1, C2, C3, and C4 are arbitrary constants to be determined. We now apply the boundary conditions.
First since the velocity must tend to zero as y → ∞ it follows that C3 = 0 and we can choose C4 = 1
without loss of generality. Second the no-slip condition at the plate, namely

(ux)y=0 = U∗ sin (f̂ t) (Bif7)

requires that
C2 = 0 and C1 = U∗ and k = f̂ (Bif8)

so the solution becomes
ux = U∗ sin (kt) e−(f̂ /ν1/2)y (Bif9)

and the corresponding vorticity is

ω = − f̂U∗

ν1/2
sin (kt) e−(f̂/ν1/2)y (Bif10)

A typical velocity profile for Ekman flow is shown in Figure 2. The velocity oscillates like a standing wave

Figure 2: Profiles of velocity and maximum velocity for Ekman flow.

with an amplitude that declines exponentially with distance from the plate. The vorticity profile is similar
in kind. The decrease in the amplitudes with y allows definition of a boundary layer thickness, δ, as the
distance from the plate at which the velocity magnitude (or the vorticity magnitude) has decreased to 1%
of the value at the plate surface. Since the value of e−s = 0.01 when s = 4.605 it follows that

δ = 4.605
ν1/2

f̂
(Bif11)

As one might have expected the boundary layer thickness decreases as the frequency increases but increases
as the kinematic viscosity increases.

We turn now to Rayleigh flow in which the plate is suddenly set in motion with velocity U at time t = 0. As
in other, equivalent unsteady diffusion problems (for example, in heat transfer) it proves to be appropriate
to seek a similarity solution in the case of a sudden change in the boundary condition. The appropriate
similarity variable is s where s = y/(4νt)1/2 (the 4 and the ν are not necessary but are included for later



Figure 3: Profiles of velocity (left) and vorticity (right) for Rayleigh flow.

convenience) and, with this similarity variable, the partial differential equation (Bif1) can be reduced to
the ordinary differential equation
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= 0 (Bif12)

where the advantage of including the 4 and the ν in the definition of the similarity variable becomes
apparent because it follows that this governing equation (Bif12) contains no parameters. Moreover the
boundary conditions the solution must satisfy are

• ux → 0 as y → ∞ that is as s → ∞.

• ux = 0 for t = 0, y > 0, that is at s = ∞.

• ux = U for y = 0, t > 0, that is at s = 0.

The solution to equation (Bif12) is obtained by setting

q =
dux

ds
(Bif13)

so that equation (Bif12) becomes

dq

q
= −2s ds and so q = C1 e−s2

(Bif14)

which can then be integrated to yield

ux = C1

∫ s

0

e−z2

dz + C2 (Bif15)

where C1 and C2 are integration constants and z is a dummy s variable. Substituting back from the
definition of s this solution can be written as

ux = C1

∫ y/(4νt)1/2
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where erf( ) is the error function. Then applying the three boundary conditions listed above it transpires
that C2 = U and C1 = −2U/(π)1/2 so that the final solution is

ux = U

[
1 − erf

(
y
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)]
(Bif17)

and
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U

(4νt)1/2
e−

y2

4νt (Bif18)

The form of this solution is shown graphically in Figure 3. The velocity profile expands outward as time
progresses. It is instructive to quantify the thickness of the boundary layer (δ) that has been affected
by the motion of the plate by seeking the distance from the plate at which the velocity has decreased to
0.01U . Since erf(1.82) = 0.99 the thickness δ = 3.64(νt)1/2. Thus the boundary layer thickness increases
with the square root of time and also increases as the viscosity increases. The vorticity begins at t = 0
as an infinitely line line of infinite vorticity. That vorticity then diffuses out into the fluid as the value at
the surface of the plate decreases. Notice also how in the absence of viscosity (ν = 0) the velocity must be
zero throughout the fluid; in other words the no-slip condition cannot be satisfied.

These features of Rayleigh flow are particularly instructive. They reveal how the no-slip condition produces
vorticity which then diffuses out into the fluid through the action of viscosity. This is a common feature
in all flows involving solid surfaces.


