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POISEUILLE FLOW

Poiseuille flow is the steady, axisymmetric flow in an infinitely long, circular pipe of radius, R, as sketched
in Figure 1. The flow is caused by a pressure gradient, dp/dx, in the axial direction, x. The resulting

Figure 1: Poiseuille flow.

axisymmetric continuity equation for an incompressible fluid yields
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so that the axial velocity, ux(r), is a function only of r, the radial coordinate. Using this the axisymmetric
Navier-Stokes equations for an incompressible fluid of constant and uniform viscosity reduce to
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The second of these shows that the pressure, p(x), is a function only of x and hence the gradient, dp/dx, is
well defined and a parameter of the problem. This allows the first of these equations (Bic2) to be integrated
so that the velocity, ux, can be written as
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where C1 and C2 are integration constants to be determined by the application of the boundary conditions.
On the axis the velocity cannot be infinite therefore C1 must be zero. Moreover, the no-slip boundary
condition on the pipe wall requires that ux(R) = 0 and so
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and so the solution to Poiseuille flow in a circular pipe is
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where the pressures, p1 and p2, could be measured at two different x locations a distance � apart in order to
determine dp/dx = (p1 − p2)/�. Parenthetically, we should add that the general solution (Bic4) also allows



construction of the axial flow between two cylinders in which the outer radius of the inner cylinder is R1

and the inner radius of the outer cylinder is R2. The no-slip boundary conditions at these two surfaces
then require that

R2
1

4μ

(
dp

dx

)
+ C1 lnR1 + C2 = 0 (Bic7)

and
R2

2

4μ

(
dp

dx

)
+ C1 lnR2 + C2 = 0 (Bic8)

from which C1 and C2 can be determined and the solution constructed. Beyond that it is also possible
to stipulate that one of the cylinders has an axial velocity, U , and to proceed to construct yet another
axisymmetric flow of this type.

However, we confine the present discussion to the simple Poiseuille flow while recognizing that parallel
analyses can be carried out for the other variants. Note first that the velocity distribution in Poiseuille
flow is parabolic according to equation (Bic6) and has a maximum velocity on the axis of
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The volume flow rate, Q̇, is
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so that the average velocity of the flow, u, is
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Thus the average is 1/2 of the maximum. This last equation is often written as

Δp =
8μ�u
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(Bic12)

to yield the pressure drop, Δp, over a length, �, of the pipe.

The shear stress distribution in the flow is best examined by applying the momentum theorem to a
cylindrical control volume of radius, r, centered on the axis of the pipe and with length, � . Since the
velocities in an out of the end of this cylinder are identical there is no net flux of momentum in or out of
this control volume and so the theorem says the axial forces must balance. The forces due to the pressure
on one end of this cylinder will be πr2p while the force on the other end a distance � downstream will
be πr2(p − Δp) where Δp is the pressure drop between the two locations. Consequently the net axial
force in the positive x direction due to the pressure forces on the ends will be πr2Δp. The only other
force acting in the axial direction is due to the shear stress acting on the outer surface area of the control
volume. Denoting that shear stress by σrr which, in accord with the sign convention used in section (Bhd),
is positive in the positive x direction, this shear force will be equal to 2πr�σrr. Therefore the balance of
forces acting on the control volume requires that

2πr�σrr + πr2Δp = 0 (Bic13)

so that

σrr = −rΔp
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(Bic14)



a result which is completely independent of the constitutive law for the contents of the pipe. The negative
sign is also in accord with expectations since the surrounding fluid necessarily counteracts the positive
force due to the pressures on the ends of the control volume. Furthermore we note that the shear stress in
the pipe always varies linearly with the radial location, r.

Normally the sign convention for the wall shear stress, τw, that the fluid applies to the interior surface of
the pipe is such that

τw = −(σrr)r=R =
RΔp
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which for Poiseuille flow, using the relation (Bic10) leads to
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This is a convenient point introduce some conventional engineering definitions. In the internal flow through
any component, the coefficient of loss is denoted by k and defined as k = 2Δp/ρu2. In a pipe flow a further
coefficient, the friction factor, f , is introduced to take account of the fact that the loss k will be proportional
to the length, �, of the pipe. Specifically, the friction factor, f , is defined as
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Inserting the result (Bic16) for Poiseuille flow this yields
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where Re = 2ρuR/μ is the Reynolds number for the pipe flow. This classic result is, of course, only valid
for laminar flow; when the flow transitions to turbulent other factors enter the picture but this discussion
is best delayed until later sections. In practical terms that transition typically occurs when Re reaches a
value of about 2000 though many other factors may effect that value.

The expression (Bic18) is only one feature that appears in perhaps the most widely used chart in all of
engineering fluid mechanics, the graph of f against the Reynolds number that is known as the Moody
chart. It can be seen on the left hand side of Figure 2.



Figure 2: The Moody diagram for the friction factor, f , as a function of Reynolds number, 2ρuR/μ.


