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VORTEX FLOW

Some useful exact solutions to the Navier-Stokes equations also emerge from flows in cylindrical coordinates
in which the only non-zero component of velocity is the circumferential velocity, uθ. These are vortex flows
which, as depicted in Figure 1 could either have an exterior cylindrical boundary, an interior cylindrical
boundary or both. In planar flow and polar coordinates, the continuity equation (Bce7) simply yields

Figure 1: Three types of vortical flow.

∂uθ/∂θ = 0 which could be regarded as obvious since otherwise uθ would be double-valued. The Navier-
Stokes equations in section (Bhg) with ur = uz = 0, derivatives in the z direction set equal to zero and
derivatives in the θ direction set equal to zero since otherwise quantities would be double-valued, simply
reduce to two consequential equations
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We will focus on the steady flows that emerge from these equations though there are unsteady flows that
involve the viscosity. The second equation (Bie2) can be simply solved to yield
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where C1 and C2 are constants to be determined by the boundary conditions. The equation (Bie1) can be
integrated to yield
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where C3 is another integration constant. Now we apply the boundary conditions to each of the three
types of flow sketched in Figure 1:

[A] Type [A] flow requires uθ = U on r = R and non-infinite velocity as r → ∞ therefore

C1 = 0 and C2 = RU (Bie5)

This is simply a potential or “free” vortex. The pressure distribution associated with it is
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where p∞ is the pressure at infinity.



[B] Type [B] flow requires uθ = U on r = R and non-infinite velocity as r → 0 therefore
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This is simply solid body rotation or a “forced” vortex. The pressure distribution associated with it
is
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where p0 is the pressure at the center.

[C] Type [C] flow requires uθ = U1 on r = R1 and uθ = U2 on r = R2 therefore
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This is mix of free and forced vortex in the gap between the cylinders.

None of these steady, exact solutions involve the viscosity.


