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The Effect of Friction

In many open channel flow analyses, it is necessary to include the effect of friction at the channel base or
sides. To illustrate the effect of a non-zero shear stress, τw, at the base or side consider the simple open
channel flow down an inclined plane as depicted in Figure 1. We apply the continuity equation and the

Figure 1: Open channel flow down an inclined plane with friction, τw.

linear momentum theorem in the x-direction to the infinitesmal element dx that spans the entire depth,
H, of the layer. The continuity equation requires that
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The linear momentum theorem in the x-direction yields
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and using equation (Bpe1)
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Recalling that the friction coefficient, f , is f = 8τw/ρu2 this can be written as
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This equation manifests the same kind of frictional effects that were described in the context of compressible
flows. Specifically

• When sin θ = τw/ρgH it follows that the flow is neither accelerating not decelerating and dH/dx = 0;
this defines a critical bed slope, θc, whose observation allows a practical estimate of τw or the friction
factor, f .

• In a subcritical flow (Fr < 1) when sin θ < fFr2/8 then dH/dx < 0, the depth decreases with distance
x and the Froude number, Fr, increases. Consequently, provided sin θ < fFr2/8 a subcritical flow
must inevitably tend to a critical limit, Fr = 1.



• On the other hand in a supercritical flow (Fr > 1) when sin θ < fFr2/8 then dH/dx > 0, the
depth increases with distance x and the Froude number, Fr, decreases. Consequently, provided
sin θ < fFr2/8 a supercritical flow must inevitably tend to a critical limit, Fr = 1.

Therefore, it follows that as long as sin θ < f/8 the Froude number must approach unity. This is termed a
controlled flume flow since it is self limiting provided the slope of the conduit is less than the critical value
of θ = arcsin f/8. In contrast, when the slope, θ, is greater than this critical value the flow will accelerate
continually.

Clearly, the friction factor, f = 8τw/ρu2, in a river or open channel will be a function not only of the
cross-sectional geometry of the channel and the flow but also of the roughness of the surfaces in contact
with the fluid. There are a number of empirical formula that are typically used to evaluate τw or f , most
usually based on the friction factors used in turbulent flow described in sections (Bk). For example in
a river with a sufficiently rough bed for the flow to be fully rough turbulent flow, the friction factor will
be primarily a function of ε/H where ε is the typical roughness size, say f = F (ε/H). As mentioned
above, the value of f is most commonly estimated by observing the slope, θc, at which the flow is neither
accelerating or decelerating. One commonly used empirical formula relating the friction (specifically θc)
to the volumetric flow velocity, u, and the typical dimension of the flow cross-section is Manning’s formula
which can be written as

θc (in radians) = n2u2/R4/3 (Bpe5)

where R is the hydraulic radius of the cross-section of the flow and n is Manning’s coefficient which is not
dimensionless. It follows from the above relations that
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so that, for fully rough turbulent flow
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Hydraulic engineers use tabulated values for n for different surface roughness elements to estimate θc and
the friction factor, f .


