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Frictionless Flow

Having established some of the basic features of open channel flows in flat-bottomed conduits, we now
broaden the discussion to consider flows in channels with varying bottom topography. However, for sim-
plicity, we begin with discussion of steady, planar flows in the absence of viscous effects. A typical bottom
geometry is sketched in Figure 1 where Z(x) is the elevation of the solid bottom as a function of the hori-
zontal coordinate, x; Z is most conveniently measured from a datum corresponding to the water level at
a point where the depth is very large (effectively infinite). It is also convenient to consider a unit breadth
of flow normal to the sketch in Figure 1. We begin by developing the equations for steady, planar, open

Figure 1: General planar open channel flow notation.

channel flow of an incompressible, inviscid fluid assuming that the any surface waves have a wavelength
much greater than the depth so that the velocity, u(x), can be assumed uniform over the depth. The
liquid surface is assumed to be everywhere at a uniform atmospheric pressure, pA, and surface tension
effects are assumed negligible. We also note that viscous, frictional effects at the underlying boundary
will be addressed in the section (Bpe) that follows. The basic governing equations that follow from these
assumptions are

• Continuity Equation:
u(x) H(x) = Q (Bpd1)

where Q is the volume flow rate per unit breadth normal to the above sketch and Q is a simple
constant.

• Bernoulli Equation:

p(x) +
1

2
ρu2 + ρgy = pT (x) = constant (Bpd2)

where p(x, y) is the fluid pressure, pT (x) is the total pressure, ρ is the fluid density, g is the acceler-
ation due to gravity and y is a coordinate measured vertically upward. This will be valid along any
streamline or streamtube provided no hydraulic jump is passed.

It is convenient and conventional to define a datum level, y = 0, at the elevation of the fluid surface where
the velocity, u(x), is negligible as depicted in Figure 1. Then, with the assumptions listed above, the



elevation difference between the datum level, y = 0, and the elevation of the fluid surface is simply given
by y = −u2/2g. Moreover this quantity is also constant at any point within the fluid since the increase in
the pressure, p, below the surface is matched by a corresponding decrease in the potential energy. Note
also that the quantity y + u2/2g is called the piezometric head and, under the assumptions listed above,
this quantity is constant throughout the fluid provided no hydraulic jump intervenes. In the section (Bpe)
which follows, the effects of friction at the underlying solid surface are most readily incorporated by a
downward sloping datum level that reflects the decrease in the Bernoulli constant caused by the frictional
effects.

In the absence of friction, the constant piezometric head can be written as

Q2

2gH2
+ H − Z = constant (Bpd3)

or {
1 − Q2

gH3

}
dH

dx
=

dZ

dx
(Bpd4)

Therefore, at a flat location where dZ/dx = 0,

• either:
dH

dx
= 0 (Bpd5)

• or:
Q2

gH3
= 1 in other words Fr = 1 (Bpd6)

The other conclusion to be drawn from equation (Bpd4) is that

If Fr = 1 then
dZ

dx
= 0 (Bpd7)

It follows that a flat location where dZ/dx = 0 is just like a throat in compressible fluid flow. A Froude
number of unity can only occur at a flat location though it is also possible at a flat location that dH/dx = 0.
But we necessarily conclude that a flow can only transition from subcritical (Fr < 1) to supercritical
(Fr > 1) at a flat location though it is also possible, depending on the conditions downstream, for a flow
with Fr = 1 at the flat location to become either subcritical or supercritical downstream of the flat location.
Very frequently, because of the downstream conditions, the flow becomes supercritical downstream of the
flat location and the only way in which it can transition back to subcritical is by passing through a hydraulic
jump. In these respects, open channel flow is very analogous to one-dimensional compressible flow.


