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Oseen Flow

In an effort to extend the Stokes flow solutions around finite objects to finite Reynolds numbers, Oseen
(1910) suggested modifying the inertial terms in the Navier-Stokes equations for steady incompressible
flow,
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(omitting the external force terms for convenience) by replacing the difficult non-linear inertial terms,
ρuj(∂ui/∂xj), with a linearized approximation, ρU(∂ui/∂x1) where U is the velocity in the uniform stream
(in the x1 direction) far from the object. The resulting equation of motion for Oseen flow is
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Though this linearization of the leading inertial term makes it possible to find an analytical solution to
the flow as Oseen demonstrated, the procedure glosses over an important challenge. As can be observed
by comparing the order of magnitude of the viscous and inertial terms in the Navier-Stokes equations, in a
frame of reference fixed in the object the magnitude of the inertial terms asymptotes to zero at the surface
since there the zero normal velocity condition and the no-slip condition require zero velocity. However
the viscous terms remain finite there. On the other hand far from the surface as the flow tends toward a
uniform stream the viscous terms tend to zero faster than the inertial terms and so the inertial terms come
to dominate at some distance from the body. Therefore neither the Stokes equations nor the equations for
potential flow (or the Oseen equations) are uniformly valid throughout the fluid domain. This is known as
the Whitehead paradox and requires the use of matched asymptotic expansions to get around it. Clearly
this is a reasonable approximation far from the body where the flow is close to being the uniform stream
but is only a crude approximation close to the object. But the linearization makes it possible to seek an
analytical solution to the flow.

We begin by detailing the solution for the flow around a sphere that Oseen uncovered using the equations
(Blh2) with the linearized inertial terms. By satisfying both the zero normal velocity condition and the
no-slip condition on the surface of the sphere, r = R, he obtained a solution in spherical coordinates,
(r, θ, φ) that is also detailed, for example, in Yih (1969). The Stokes streamfunction, ψ(r, θ, φ), of that
solution is
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where Re = 2UR/ν is the conventional Reynolds number of the flow. Consequently, unlike the Stokes
flow solution which is symmetric about the plane at θ = π/2, this Oseen flow is asymmetric and that
asymmetry is related to the non-zero value of the Reynolds number. As the Reynolds number increases
the asymmetry increases. Expanding for small Reynolds number, Re, equation (Blh3) becomes
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Indeed, as seen in figures 2 and 1, the solution exhibits an asymmetry that is reminiscent of a rudimentary
wake.



Figure 1: Typical streamlines in Oseen flow past a sphere: The streamlines for ψ/UR2 = 0.1 and 0.2 at a Reynolds number
of Re = 1.0.

Figure 2: Typical streamlines in Oseen flow past a sphere: The streamline for ψ/UR2 = 0.1 at three different Reynolds
numbers of Re = 0.01, 0.1 and 1.0.

When the drag on the sphere in Oseen flow is evaluated it transpires that

Drag = 6πμRU
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However, because the flow close to the surface is not accurately modeled by the Oseen equation (Blh2),
the Reynolds number correction to the classic Stokes flow result for the drag, 6πμRU , might be questioned
though it turns out to agree with the more accurately evaluated correction term at the O(Re) order.
Proudman and Pearson (1957) carried out a more accurate analysis in which a Stokes flow solution near
the surface of the sphere and a perturbation solution in the far field that accounted for the inertial terms
were dovetailed together using the method of matched asymptotic expansions. Their expression for the
drag was
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and demonstrates that the O(Re) correction of Oseen was correct (though perhaps fortuitously).

The above-mentioned paradox in the three-dimensional flow around finite objects becomes even more
serious when it comes to planar flows. It transpires that the mis-match caused by the dominance of the



viscous terms close to the surface of the body and the dominance of the inertial terms far away mean that
it is not possible to find a uniformly valid solution to the external, low Reynolds number viscous flow of a
uniform stream around a finite body. This is known as Stokes paradox.

We note that linearization of these far-field inertia effects by means of Oseens approximation permits the
construction of more complicated flow fields by means of a modified set of fundamental solutions (see
section (Blc)) in which the Oseenlet replaces the Stokeslet. Then more complicated flows at low Reynolds
number that include approximate inertial effects can be constructed by superposition using Oseenlets and
other singularities.


