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Linear Stability Analyses

The stability of steady laminar flows of an incompressible, Newtonian fluid of kinematic viscosity, ν, is
assessed by a linear stability analysis that begins with the relevant equations of continuity and motion,
(Bhf3) and (Bhf4):
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Each of the flow variables, q (where q represents ui or p) is then decomposed into a steady or time-
independent component denoted by an overbar, q̄, and a small, time-dependent perturbation, q̃. The
latter is envisaged as a small perturbation such that q̃ � q̄ so that terms that are quadratic (or higher
order) in q̃ quantities can be neglected leaving only terms that are either independent of or linear in q̃
quantities. Consequently various perturbations, q̃, can be linearly superposed.

We will conduct what is known as a normal mode analysis by considering perturbations that are oscillatory
in time, t, and in one spatial direction, say x, so that q̃ may be written in the form

q = q̄(xi) + q̃(xi, t) = q̄(xi) +Re
{
q̃∗(xi)e

i(kx−ωt)
}

(Bkc3)

where i is the square root of −1, Re{ } denotes the “real part of” and q̃∗ is the amplitude of the
perturbation. The wavenumber, k, and the radian frequency, ω, may both be complex so that

k = kR + ikI and ω = ωR + iωI (Bkc4)

where the subscripts R and I denote the real and imaginery parts. This allows two types of solution that
are of particular interest namely

• oscillatory perturbations that have an amplitude that is growing in space but not in time so that
ωI = 0 and ω = ωR is the perturbation frequency. Then kR is the wavenumber of the wave-like
perturbation and kI is the growth or attenuation rate. For convenience we refer to this as the spatial
growth case.

• oscillatory perturbations that have an amplitude that is growing in time but not in space so that
kI = 0 and 2π/k = 2π/kR is the wavelength of the perturbation. Then ωR is the spatial wavenumber
of the wave-like perturbation and ωI is the spatial growth or attenuation rate. For convenience we
refer to this as the temporal growth case.

Here we will focus primarily on the first case and examine the rate of growth, ωI , of perturbations of
frequency, ωR, and wavenumber, kR.

When expansions of the form (Bkc3) are substituted into the governing equation (Bkc2), the terms which
are independent of t are isolated and solved to obtain the mean motion. The terms that are linear in the
perturbations q̃∗ are the linear stability equations that are to be solved to determine the stability of the
flow.

In practice, the implementation of this procedure is very difficult unless the basic mean flow is simple. Here
we shall limit the implementation to simple planar, parallel flows in which the unperturbed flow consists



of a velocity, ū = U(y), in the x direction, v̄ = 0 and p̄ is uniform and constant. The equations of motion
(Bkc2) for this parallel flow are:
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The perturbations in the streamfunction, ψ̃, and pressure, p̃, will be represented by

ψ̃ = Re
{
f(y)ei(kx−ωt)

}
and p̃ = Re

{
g(y)ei(kx−ωt)

}
(Bkc7)

so that
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and substituting these expressions into the equations of motion, (Bkc5) and (Bkc6), yields
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Eliminating the function g from these two equations results in
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This equation which must be solved for the perturbation f(y) is called the Orr-Sommerfeld equation. The
version in which the viscous terms are neglected is
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and is called the Rayleigh equation. Notice that both versions are homogeneous in f and represent eigen-
value problems for which we need to identify boundary conditions.

It remains to discuss the boundary conditions under which these equations must be solved. We will do so
for boundary layer velocity profiles, for planar Couette flow and for planar pipe flow, cases which will be
addressed in other sections. At any solid boundary parallel with the x direction at, say, y = 0, the zero
normal velocity and no-slip conditions require that

(f)y=0 = 0 and

(
df
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)
y=0

= 0 (Bkc13)

Furthermore, in the case of the boundary layer problem we must require that

(f)y→∞ → 0 (Bkc14)

in order that the perturbation velocities decay to zero at large y. In the inviscid case governed by the
Rayleigh equation (Bkc12), these three boundary conditions (equations (Bkc13) and (Bkc14)) complete
the eigenvalue problem. The calculation for the spatial problem using a shooting method can proceed as
follows. Given U(y) and a real frequency, ωR, we choose guessed vales for both kR and kI and begin the



numerical integration for f at y = 0 where both f and df/dy are zero. The Rayleigh equation then yields
d2f/dy2 and we integrate using, for example, a Runge-Kutta procedure to find f and df/dy at the next y
mesh point (this is best done along a complex y contour in order to avoid potential singularities on the real
y axis). As the integration approaches large and real values of y the boundary condition as y → ∞ must
be satisfied and this provides a criterion by which both kR and kI must be adjusted in order to satisfy that
condition. An iterative method can then be used to determine the final values of kR and kI . Note that
the temporal problem for a particular kR can be addressed in a precisely analogous way except that this
involves initial guessed and finally determined values of ωR and ωI .

Planar Couette flow or planar pipe flow can be handled in a manner very similar to the above procedures
for the boundary layer flow except that the boundary condition at y → ∞ is now replaced by the condition
that f = 0 at y = h/2 where h is the width of the gap or pipe.

The Orr-Sommerfeld equation contains fourth order terms in addition to the second order terms in the
inviscid Rayleigh equation and therefore the viscous calculation using the Orr-Sommerfeld equation requires
two additional boundary conditions, specifically values of d2f/dy2 and d3f/dy3 at y = 0. Usually it is
assumed that these derivatives at y = 0 are zero.

In the next section, typical results from these instability calculations are presented and discussed.


