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Turbulent Boundary Layers

We now turn to describe the characteristics and analyses of turbulent boundary layers, focusing on the
boundary layers on flat surfaces though the results are frequently applied to surfaces with different ge-
ometry. Figure 1 presents experimental measurements of the Reynolds stress quantities in a turbulent
boundary layer as a function of distance, y, from the surface as well as the mean velocity profile, u/U . The
insert shows how all the Reynolds stresses begin at zero at the surface, y = 0, while the main graph shows
how they peak a short distance from the surface and eventually decline to zero at the edge of the boundary
layer. None of these fluctuation quantities are large but the Reynolds shear stress, u′v′/U2, dominates the
shear stress in many turbulent flows including turbulent boundary layers.

Figure 1: Measurements of the Reynolds stresses in a turbulent boundary layer.

Turbulent boundary layers, while not as simple as turbulent pipe flow since they are evolving with distance,
can be treated in essentially the same way by utilizing the universal velocity profile (equations (Bkl7)
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for y∗ < 5 and
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for y∗ > 5 along with the Karman momentum integral equation (equation (Bjh12)) for boundary layers.
With zero pressure gradient (∂U/∂s = 0) the Karman momentum integral equation becomes
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Defining the outer limit of the turbulent boundary layer where u → U to be y = δ it follows from equation
(Bkk2) that
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This is the expression for u/U as a function of y that is needed with the Karman momentum integral
equation to solve for the flow. Unfortunately, it does not necessarily conform to a simple and constant
numerical relation between δ and δM that would permit progress toward a solution. Even if we assume
such a relation, namely that δM = αδ where α is an assumed, known constant, the differential equation
for δ(s) that results is (
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which is not soluble analytically.

However, if we take a simpler approach and assume that that the velocity profiles in the boundary layer
can be approximated by the Blasius one-seventh power law profile, equation (Bkj9)

u∗ = 8.7(y∗)
1
7 or

u

uτ
= 8.7

(yuτ

ν

) 1
7

(Bkk7)

and therefore
U

uτ
= 8.7

(
δuτ

ν

)1
7

(Bkk8)

so that
u

U
= 8.7

(y

δ

)1
7

(Bkk9)

Consequently the Blasius profile leads to self-similar velocity profiles and therefore to a simple, constant
value of α = 7/72 = 0.0972. Moreover from the relation (Bkk8) it follows that
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and with the Karman momentum integral equation (Bkk3) this leads to the following differential equation
for the boundary layer thickness, δ:
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whose solution is

δ
5
4 = 0.294

( ν

U

)1
4
s + C (Bkk12)

where C is an integration constant to be determined at the location s = s0 where the layer first becomes
turbulent. If δ = δ0 at s = s0 then
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Often, at high Reynolds numbers, both δ0 and s0 are negligibly small so that
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Figure 2: Plot of the drag coefficient due to skin friction on a flat plate as a function of the Reynolds number, ReL = UL/ν .

Among the other useful results of this turbulent boundary layer analysis is the surface shear stress which,
from the relations (Bkk10) and (Bkk14), becomes:
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where Res is the Reynolds number based on the distance along the surface. The left-hand side defines what
is known as the skin-friction coefficient. It should be compared with the skin-friction coefficient for laminar
boundary layer flow, namely 0.664(Res)

− 1
2 . This comparison shows that the surface friction decreases less

quickly with distance, s, under the turbulent boundary layer and this helps explain why separation (which
occurs when τW declines to zero) is delayed in a turbulent boundary layer in comparison to a laminar
boundary layer.

The skin friction drag, D, on a plate of length L and breadth B due to the turbulent boundary layer on
one side of the plate (assuming both δ0 and s0 are zero) is consequently given by
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∫ L
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and substituting the expression (Bkk15) the drag coefficient, CD = 2D/ρLBU2 , is given by

CD = 0.074(ReL)−
1
5 (Bkk17)

where ReL is the Reynolds number based on the length of the plate, L. This compares with the equivalent
expression for a laminar boundary layer namely CD = 1.325(ReL)−

1
2 . Figure 2 presents how these results

appear in a graph of the drag coefficient against the Reynolds number.


