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Added Mass Matrix

We will consider a finite three-dimensional body moving and accelerating in a fluid at rest far from that
body. If that body experiences a general motion with translational accelerations, Aj, j = 1, 2, 3 in any or all
three directions and rotational accelerations, Aj, j = 4, 5, 6 in the same directions then it will, in general,
experience fluid forces, Fi, i = 1, 2, 3, and moments Fi, i = 4, 5, 6, in all the same directions. We seek to
find the relations between those accelerations and forces. However, unless those relations are linear the
construction becomes extremely complicated and not readily addressed analytically. Fortunately there are
some fluid flows in which those relations are linear, specifically in the case of potential flow or Stokes’s flow
at asymptotically small Reynolds numbers. We confine the following discussion to those circumstances.
The linear relations allow flows to be superposed and the effects of individual motions and accelerations
in one direction to be superimposed on or isolated from those in another direction. We might however
note that even in flows which are not superposable, the methodology that follows might be a useful first
approximation.

Given superposability and linear relations between the accelerations, Aj, j = 1 → 6, and the forces, Fi,
i = 1 → 6, they induce, we can define an added mass matrix, Mij , as

Fi = −MijAj (Bmbb1)

When the flow is superposable it is convenient to define uij as the induced fluid velocities caused by unit
velocity of the body in the j direction (j = 1 → 6). Then, if the body velocities are denoted by Uj,
j = 1 → 6, it follows that the fluid velocities are

ui = uijUj (Bmbb2)

and the total kinetic energy can then be written as

T =
1

2
AjkUjUk (Bmbb3)

where the matrix, Ajk, is composed of elements

Ajk = ρ

∫
V

uijuikdV = Mjk (Bmbb4)

and it can be shown (Yih 1969, p.102) that the matrix Ajk is, in fact, the added mass matrix, Mjk.
It is certainly clear that the diagonal terms, A11, A22, and A33, are identical to the added masses in the
introduction (to establish this define the direction x of that introduction as either x1, x2, or x3; then uij and
uik are identical to the velocity ui/U in the introduction). Moreover, equation (Bmbb4) also demonstrates
that the added mass matrix must be symmetric when the flow is superposable since exchanging the indices
j and k in that equation does not change the value of the right hand side. Hence superposability implies
symmetry of the added mass matrix. Consequently, in general, the added mass matrix will contain 21
different coefficients, 6 diagonal values and 15 off-diagonal values since a force applied externally to the
body will, in general, cause accelerations in all six directions, translational and rotational.

To complete the formulation of the inertial terms in the equation of motion for a body we would add to
the left hand side of equation (Bmbb1) the inertial matrix due to the mass and moments of inertia of
the material of the body itself. If the center of mass of the body is chosen as the origin for the body



mass matrix then that matrix will be symmetric and will contain only 7 different, non-zero values (namely
the mass and the six different components of the moment of inertia matrix). This contrasts with the
21 independent coefficients in the added mass matrix. This number can however be reduced when one
considers the simplifications caused by geometric symmetries.

The simplifications introduced by geometric symmetries of the body are fairly easily established. Consider,
for example, a body with a single plane of symmetry, for example an airplane. It is clearly convenient
to select axes such that this plane of symmetry corresponds to the x3 = 0 plane. Then any acceleration
confined to this plane, namely any combination of A1, A2 and A6, will produce no added mass force F3,
F4 or F5. The only possible non-zero forces will be F1, F2 and F6. It follows that for such a body the
following 9 components of the added mass matrix will be zero:

Mij = 0 for i = 3, 4, 5 ; j = 1, 2, 6 (Bmbb5)

If, in addition, the flow is assumed to be potential flow such that the matrix is symmetric then Mji = 0 for
the same domains of i and j. The number of independent, non-zero values required to define the matrix
is 12, namely

Mii , i = 1 → 6 and M12, M34, M35, M45, M16 and M26 (Bmbb6)

Bodies which have two planes of symmetry (for example, a hemisphere) yield a further reduction in the
number of non-zero values. Suppose axes are chosen such that both x2 = 0 and x3 = 0 are planes of
symmetry. Then not only must equation (Bmbb5) be true but also

Mij = 0 for i = 2, 4, 6 ; j = 1, 3, 5 (Bmbb7)

and again assuming potential flow Mji = 0 for the same domains. Then the only non-zero values which
need evaluation are

Mii , i = 1 → 6 and M35 and M26 (Bmbb8)

The last two, which with M62 = M26 and M53 = M35 represent the only non-zero off-diagonal terms,
correspond to the moment about the x3 axis generated by acceleration in the x2 direction and the moment
about the x2 axis generated by acceleration in the x3 direction. In other words since the body is not
symmetric about the x2x3 plane linear acceleration in either the x2 or x3 direction will cause pitching
moments in the x1x2 or x1x3 planes.

A few simple bodies such as a sphere, circular cylinder, cube, or rectangular box have three planes of
symmetry. By following the same procedure used above it is clear that the only possible non-zero elements
are

Mii , i = 1 → 6 and M15, M16, M24, M26, M34 and M35 (Bmbb9)

and that in the case of potential flow all of the off-diagonal terms are zero. Only in this simple case of three
axes of symmetry and symmetry of the matrix (see below) does the added mass matrix become purely
diagonal so that there are no secondary induced accelerations.

One other form of equation (Bmbb4) is useful in dealing with potential flows. If φj denotes the velocity
potential of the steady flow due to motion with unit velocity in the j direction, then it follows that

uij =
∂φj

∂xi
(Bmbb10)

Then substitution into equation (Bmbb4) and application of Green’s theorem yields

Mjk = Ajk = −ρ

∫
S

φj
∂φk

∂n
dS (Bmbb11)



where S is the surface of the body and n is the outward normal to that surface. In many potential flows it
is clearly easier to evaluate the surface integral in equation (Bmbb11) than the volume integral in equation
(Bmbb4).

It is also appropriate to point out that the theoretical values of the added mass for potential flow that
are presented in the following sections have a broader relevance than might first be imagined. Even in a
viscous fluid, the added mass for a body accelerating from rest in a fluid previously at rest is given by the
potential flow value at that first moment when the velocity is still zero. This is because, when the velocity
is zero, the vorticity is zero and therefore we can define what is known as the acceleration potential, φ′,
such that

∂u

∂t
= ∇φ′ (Bmbb12)

Then conservation of mass for an incompressible fluid leads to Laplace’s equation and potential flow for
the acceleration. Hence we have potential flow even when the later flow is dominated by viscous effects.
It follows that in this first moment the forces and accelerations in a viscous flow are related in the same
way as in conventional potential flow.


