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Joukowski Airfoils

In section (Bmbb), the following expression for the added mass matrix in potential flow was derived
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where S is the surface of the body, n is the outward normal to that surface and ¢; and ¢, are the velocity
potentials on the surface of the object whose added mass matrix we seek; specifically they are the velocity
potentials of the steady potential flows due to translation of the foil with unit velocity in the j and k
directions (and zero fluid velocity far from the foil). Moreover, the condition of zero normal velocity on
the surface means that
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where ny is the component of the unit outward normal in the &k direction. Substituting this into equation
(Bmbel) it follows that

= ny (Bmbe2)

M, = —p/qﬁjnde (Bmbe3)
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Now the steady potential flow past a Joukowski airfoil was detailed in section (Bged) where the velocity
potential on the surface of the foil, ¢**, was given by equation (Bged19) as
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where the surface begins at the trailing edge at # = —3 and ends at the trailing edge at 6 = 27 — (.
However, ¢**, is not the surface velocity potential that is needed for present purposes. As described in
section (Bged), it is the velocity potential for a flow in which the foil is fixed in position and the flow far
from the foil is a uniform stream of velocity U inclined at an angle « to the £ direction. The velocity
potential we need for present purposes is that in which the flow far from the foil is at rest and the foil is
moving with a velocity U at an angle a to the £ direction. The adjustment is simply a matter of reversing
the sign of the right hand side of equation (Bmbe4) and adding a uniform stream component of magnitude,
U, and inclination « to obtain the following adjusted velocity potential, ¢***:

2R [cos (0 — a) — (6 — ) sin (a + 5] (Bmbe4)

¢U = &7 —2R|cos (0 — a) — (6 — a)sin (a + B)] (Bmbeb)
It follows from this that the earlier defined ¢; in equation (Bmbe3) is given by
QS*** QS***
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where the j = 1 and j = 2 directions correspond to the directions of the £ and 7 axes.

In order to perform the surface integral in equation (Bmbe3) we note that the relation between a surface
element, ds, in the ¢ plane and a surface element, df, in the z plane is

(ds)? = (d?+(dn)?  sothat L — R'l_aﬁ
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Moreover, since the components of the unit normal to the surface, ng, are given by

(1- a2/z2)ei9]
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it follows that q )
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Thus, finally, the integrand in equation (Bmbe3) is completely defined and integrations can be performed
numerically to determine the added masses, Mjy.

We define non-dimensional added mass coefficents, M7, as
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where ¢ and s are the chord and span of the foil. Then the diagonal added mass coeffient, M7, in the
direction of the chord line is shown in Figure 1, and the diagonal added mass coefficient, MJ], in the
direction normal to the chord line is plotted in Figure 2. These coefficients are plotted for various foil
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Figure 1: The added mass, M7{, for a range of different Joukowski airfoils.

thickness parameters, R/a, and for three different angles [ (see section (Bged) for the corresponding foil
geometries and lift coefficients in steady flow).

Notice that when R/a — 1 and [ = 0 the foil becomes a flat plate for which M} — 0 and Mj; — 7/4 =
0.785 in accord with the results listed in section (Bmbd).
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Figure 2: The added mass, M35, for a range of different Joukowski airfoils.



