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Method of Characteristics

The typical numerical solution by the method of characteristics is depicted graphically in figure 1. The
time interval, δt, and the spatial increment, δs, are specified. Then, given all values of the two dependent
variables (say u and h∗) at one instant in time, one proceeds as follows to find all the values at points
such as C at a time δt later. The intersection points, A and B, of the characteristics through C are
first determined. Then interpolation between the known values at points such as R, S and T are used to
determine the values of the dependent variables at A and B. The values at C follow from equations such
as (Bnfb15) and (Bnfb16) or some alternative version. Repeating this for all points at time t + δt allows
one to march forward in time.

Figure 1: Example of numerical solution by method of characteristics.

There is, however, a maximum time interval, δt, that will lead to a stable numerical solution. Typically this
requires that δt be less than δx/c. In other words, it requires that the points A and B of figure 1 lie inside
of the interval RST . The reason for this condition can be demonstrated in the following way. Assume for
the sake of simplicity that the slopes of the characteristics are ±c; then the distances AS = SB = cδt.
Using linear interpolation to find uA and uB from uR, uS and uT leads to
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Consequently, an error in uR of, say, δu would lead to an error in uA of cδuδt/δs (and similarly for uT

and uB). Thus the error would be magnified with each time step unless cδt/δs < 1 and, therefore, the
numerical integration is only stable if δt < δx/c. In many hydraulic system analyses this places a quite
severe restriction on the time interval δt, and often necessitates a large number of time steps.

A procedure like the above will also require boundary conditions to be specified at any mesh point which
lies either, at the end of a pipe or, at a junction of the pipe with a pipe of different size (or a pump or any
other component). If the points S and C in figure 1 were end points, then only one characteristic would
lie within the pipe and only one relation, (Bnfb13) or (Bnfb14), can be used. Therefore, the boundary
condition must provide a second relation involving uC or h∗

C (or both). An example is an open-ended pipe
for which the pressure and, therefore, h∗ is known. Alternatively, at a junction between two sizes of pipe,
the two required relations will come from one characteristic in each of the two pipes, plus a continuity



equation at the junction ensuring that the values of uA0 in both pipes are the same at the junction. For
this reason it is sometimes convenient to rewrite equations (Bnfb11) and (Bnfb12) in terms of the volume
flow rate Q = uA0 instead of u so that
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Even in simple pipe flow, additional complications arise when the instantaneous pressure falls below vapor
pressure and cavitation occurs. In the context of water-hammer analysis, this is known as “water column
separation”, and is of particular concern because the violent collapse of the cavity can cause severe struc-
tural damage (see, for example, Martin 1978). Furthermore, the occurrence of water column separation can
trigger a series of cavity formations and collapses, resulting in a series of impulsive loads on the structure.
The possibility of water column separation can be tracked by following the instantaneous pressure. To
proceed beyond this point requires a procedure to incorporate a cavity in the waterhammer calculation
using the method of characteristics. A number of authors (for example, Tanahashi and Kasahara 1969,
Weyler et al. 1971, Safwat and van der Polder 1973) have shown that this is possible. However the calcu-
lated results after the first collapse can deviate substantially from the observations. This is probably due
to the fact that the first cavity is often a single, coherent void. This will shatter into a cloud of smaller
bubbles as a result of the violence of the first collapse. Subsequently, one is dealing with a bubbly medium
whose wave propagation speeds may differ significantly from the acoustic speed assumed in the analytical
model. Other studies have shown that qualitatively similar changes in the water-hammer behavior occur
when gas bubbles form in the liquid as a result of dissolved gas coming out of solution (see, for example,
Wiggert and Sundquist 1979).

In many time domain analyses, turbomachines are treated by assuming that the temporal rates of change
are sufficiently slow that the turbomachine responds quasistatically, moving from one steady state operating
point to another. Consequently, if points A and B lie at inlet to and discharge from the turbomachine
then the equations relating the values at A and B would be

QB = QA = Q (Bnfc5)

h∗
B = h∗

A + H(Q) (Bnfc6)

where H(Q) is the head rise across the machine at the flow rate, Q. Data presented later will show that
the quasistatic assumption is only valid for rates of change less than about one-tenth the frequency of shaft
rotation. For frequencies greater than this, the pump dynamics become important (see sections Bngi,
Bngj).

For more detailed accounts of the methods of characteristics the reader is referred to Streeter and Wylie
(1967), or any modern text on numerical methods. Furthermore, there are a number of standard codes
available for time domain analysis of transients in hydraulic systems, such as that developed by Amies,
Levek and Struesseld (1977). The methods work well so long as one has confidence in the differential
equations and models which are used. In other circumstances, such as occur in two-phase flow, in cavitating
flow, or in the complicated geometry of a turbomachine, the time domain methods may be less useful than
the alternative frequency domain methods to which we now turn.


