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Time Domain Methods

The application of time domain methods to one-dimensional fluid flow normally consists of the following
three components. First, one establishes conditions for the conservation of mass and momentum in the
fluid. These may be differential equations (as in the example in the next section) or they may be jump
conditions (as in the analysis of a shock). Second, one must establish appropriate thermodynamic con-
straints governing the changes of state of the fluid. In almost all practical cases of single-phase flow, it is
appropriate to assume that these changes are adiabatic. However, in multiphase flows the constraints can
be much more complicated. Third, one must determine the response of the containing structure to the
pressure changes in the fluid.

The analysis is made a great deal simpler in those circumstances in which it is accurate to assume that both
the fluid and the structure behave barotropically. By definition, this implies that the change of state of
the fluid is such that some thermodynamic quantity (such as the entropy) remains constant, and therefore
the fluid density, ρ(p), is a simple algebraic function of just one thermodynamic variable, for example
the pressure. In the case of the structure, the assumption is that it deforms quasistatically, so that, for
example, the cross-sectional area of a pipe, A(p), is a simple, algebraic function of the fluid pressure, p.
Note that this neglects any inertial or damping effects in the structure.

The importance of the assumption of a barotropic fluid and structure lies in the fact that it allows the
calculation of a single, unambiguous speed of sound for waves traveling through the piping system. The
sonic speed in the fluid alone is given by c∞ where

c∞ = (dρ/dp)−
1
2 (Bnfa1)

In a liquid, this is usually calculated from the bulk modulus, κ = ρ/(dρ/dp), since

c∞ = (κ/ρ)−
1
2 (Bnfa2)

However the sonic speed, c, for one-dimensional waves in a fluid-filled duct is influenced by the compress-
ibility of both the liquid and the structure:
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or, alternatively,
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The left-hand side is the acoustic impedance of the system, and the equation reveals that this is the sum
of the acoustic impedance of the fluid alone, 1/ρc2

∞, plus an “acoustic impedance” of the structure given
by (dA/dp)/A. For example, for a thin-walled pipe made of an elastic material of Young’s modulus, E,
the acoustic impedance of the structure is 2a/Eδ, where a and δ are the radius and the wall thickness of
the pipe (δ � a). The resulting form of equation (Bnfa4),
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is known as the Joukowsky water hammer equation. It leads, for example, to values of c of about 1000m/s
for water in standard steel pipes compared with c∞ ≈ 1400m/s. Other common expressions for c are
those used for thick-walled tubes, for concrete tunnels, or for reinforced concrete pipes (Streeter and Wylie
1967).


