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Turbomachine Dynamics

In this section we address the one-dimensional model needed to represent the dynamics of an axial flow
pump or a propeller in a time-domain treatment of such a component. This will serve as an example for
a more general class of machines that inject or extract energy from a flow.

Figure 1: Schematic and notation of an axial flow pump (A∗/Ap = 1) or a propeller in a duct or tunnel (A∗/Ap > 1); the
cavitation volume is shown in red.

We consider the one-dimensional unsteady, incompressible flow through a pump or propeller (either cavi-
tating or non-cavitating) in a tunnel as shown in Figure ??. The impeller or propeller (cross-sectional area
Ap) is located on the centerline of the tunnel whose cross-sectional area is A∗. We focus on the stream
tube containing the propeller and, for simplicity, it will be assumed that the flow is one-dimensional and
uniformly distributed across the propeller stream tube. Friction and mixing losses between the inner and
outer flows are neglected. We seek the unsteady flow characteristics manifest by such a device both when
the propeller is cavitating and when it is not. The mean flow or time-averaged performance of this device
was analyzed in Sections (Mfc) and (Mfg) using the basic conservation principles.

To include the unsteady flow contributions, it is necessary to revisit and revise the basic conservation results
presented in Sections (Mfc) and (Mfg). The notation used is the same as that used in those sections. Mass
conservation requires that

vmi1A1 − vmp1Ap = −
∫ 0

−∞

∂A(x, t)

∂t
dx (Bnfd1)

vmi2A2 − vmp2Ap =

∫ ∞

0

∂A(x, t)

∂t
dx (Bnfd2)

vmp2Ap − vmp1Ap =
dVc

dt
dt (Bnfd3)

vmi2A2 + vmo2(A
∗ − A2) − vmi1A

∗ =
dVc

dt
dt (Bnfd4)

The right-hand-sides of equations (Bnfd1) and (Bnfd2) represent the volume change of the stream tube
upstream and downstream of the propeller; later these will be ignored for simplicity. The relation between



the pressures far upstream and far downstream is obtained by applying Bernoulli’s equation in the outer
flow as follows:

p2 − p2 =
1

2
ρ
{
v2

mi1 − v2
mo2

} − ρ

∫ ∞

−∞

∂vmo(x, t)

∂t
dx (Bnfd5)

where the last term of the right-hand-side is the inertia effect in the control volume.

Now, we calculate the thrust force F produced by the propeller by applying three basic equations. First,
applying the momentum theorem to a control volume containing all the tunnel flow, we obtain;

ρv2
mi1A

∗ + p1A
∗ + F = ρv2

mo2(A
∗ − A2) + ρv2

mi2A2 + p2A
∗ +

dM

dt
(Bnfd6)

The last term in the right-hand-side is rate of the change of the momentum in the control volume, repre-
sented by

dM

dt
= ρ

d

dt

[∫ ∞

−∞
{vmi(x, t)A(x, t) + vmo(x, t)(A∗ − A(x, t))}dx

]

= ρ
d

dt

[∫ ∞

0

dVc

dt
dx + A∗

∫ ∞

−∞
vmi1dx

]
= ρ

∫ ∞

0

d2Vc

dt2
dx + ρA∗

∫ ∞

−∞

dvmi1

dt
dx (Bnfd7)

which yields

F =
1

2
ρ(vmi1 − vmo2)A

∗(2vmi2 + vmo2 − vmi1) + ρ(vmi2 + vmo2)
dVc

dt

+

[
ρA∗

∫ ∞

−∞

∂(vmi1 − vmo(x, t))

∂t
dx + ρ

∫ ∞

0

d2Vc

dt2
dx

]
(Bnfd8)

Second, we obtain the total pressure difference across the propeller, ΔpT , from the Euler head,

ΔpT = ρRΩvθp2 = ρRΩ(RΩ − vmp2 cotβ) − ρ
c

sin β

dvmp2

dt
(Bnfd9)

The last term in this equation represents the inertia effect of the fluid in the blade passage. Since the
static pressure difference, pp2 − pp1, is given by

pp2 − pp1 =
1

2
ρ
{
R2Ω2 − v2

mp2 cot β
}− ρ

c

sinβ

dvmp2

dt
(Bnfd10)

the thrust force can be computed as

F = (pp2 − pp1)Ap + ρ
{
v2

mp2 − v2
mp1

}
Ap

=
1

2
ρ
{
R2Ω2 − v2

mp2 cotβ
}

Ap + ρ(vmp2 + vmp1)
dVc

dt
− ρ

Apc

sinβ

dvmp2

dt
(Bnfd11)

Third, the pressures pp1 and pp2 may be related to the upstream and downstream conditions using
Bernoulli’s equation:

pp1 = p1 +
1

2
ρv2

mi1 −
1

2
ρv2

mp1 − ρ

∫ 0

−∞

∂vmi(x, t)

∂t
dx (Bnfd12)

where the last term is the inertance in the stream tube. Applying Bernoulli’s equation between the outlet
of the propeller and far downstream, we obtain

pp2 = p2 +
1

2
ρ
[
v2

mi2 + v2
θp2(Ap/A2)

] − 1

2
ρ
[
v2

mp2 + v2
θp2

]
+ ρ

∫ ∞

0

∂vmi(x, t)

∂t
dx



= p2 +
1

2
ρv2

mi2 −
1

2
ρv2

mp2 +
1

2
ρ [RΩ − vmp2 cotβ]2 [(Ap/A2) − 1]+ρ

∫ ∞

0

∂vmi(x, t)

∂t
dx (Bnfd13)

Then the thrust force F follows as

F = (pp2−pp1)Ap+ρ
{
v2

mp2 − v2
mp1

}
Ap

=
1

2
ρ
[{

v2
mi2 − v2

mo2

}
+ {RΩ − vmp2 cotβ}2 {(Ap/A2) − 1}]Ap

−1

2
ρ(vmp2 + vmp1)

dVc

dt
+ ρAp

∫ ∞

0

∂(vmi(x, t)− vmo(x, t))

∂t
dx (Bnfd14)

For the purpose of the general discussion, we have considered all possible unsteady effects in the above
formulation, namely the effects of volume change of the stream tubes in equations (Bnfd1) and (Bnfd2),
the inertia effects upstream and downstream of the propeller in equations (Bnfd5), (Bnfd8) and (Bnfd14),
and the inertia effect in the propeller in equation (Bnfd11) as well as the effects of the cavity volume
change dVc/dt in equations (Bnfd3) and (Bnfd4). To evaluate many of these terms, we would need to
know the shape of the stream tube, which is beyond the scope of the present one-dimensional stream tube
analysis. Consequently, some compromises are needed in order to proceed. First we neglect the stream tube
volume changes in equations (Bnfd1) and (Bnfd2) on the basis that these cancel and thus produce no net
perturbation within the water tunnel; this may need further examination. Second, we neglect the inertance
terms in equations (Bnfd5), (Bnfd8) and (Bnfd14) on the basis that past experience has suggested that
we can consider these contributions to be lumped into the other inertance contributions further upstream
and downstream. In the absence of large volumes of cavitation so that Vc ≈ 0, this completes the model
needed for inclusion in a time-domain treatment of a system that incorporates such a device. Note that
the eight equations (Bnfd1) through (Bnfd14) contain eight unknowns vmo2, vmi2, vmp2, vmp1, A1, A2, F ,
and p2 assuming that the propeller operating parameters vmi1, p1, ΩR, and the discharge flow angle, β, are
known. We also note that the empirical relations for the deviation angle that were described in Section
(Mfg) will be used again here.

In an unsteady flow in which the propeller is cavitating so that Vc �= 0 and therefore the effects associated
with dVc/dt in equations (Bnfd3) and (Bnfd4) must be included, it is necessary to establish a functional
expression for the cavity volume, Vc, and thus complete the set of governing equations. Consistent with
the understanding developed in the context of cavitating pumps it will be assumed that cavity volume,
Vc(pp1, vmp1), is a function of the inlet pressure pp1 and inflow velocity vmp1. Then, the rate of change of
the cavity volume can be expressed as

dVc

dt
= −K

dpp1

dt
− M

dvmp1

dt
(Bnfd15)

where K = −∂Vc/∂pp1 and M = −∂Vc/∂vmp1 are respectively the cavitation compliance and the mass
flow gain factor (see Sections ???? and Brennen and Acosta 1973). These important parameters are
non-dimensionalized as follows;

K∗

2π
= −∂(Vc/ApR)

∂σ∗ =
ρRΩ2

2Ap

∂Vc

∂pp1
=

ρΩ2

2πR
K (Bnfd16)

M∗ = − ∂(Vc/ApR)

∂(vmp1/RΩ)
=

Ω

Ap

∂Vc

∂vmp1
=

Ω

πR2
M (Bnfd17)

where K∗ and M∗ are the non-dimensional values of the cavitation compliance and the mass flow gain
factor used by Duttweiler and Brennen (2002). Typical values for K and M are estimated by Otsuka



et al. (1996) and Watanabe et al. (1998) using free streamline theory. Here, we utilize their results in
order to estimate appropriate values of K∗/2π and M∗. The values of (K∗/2π, M∗) obtained by those
investigations are shown in Figure ?? for typical values for the solidity (1.0), the stagger angle (β = 25◦)
and the number of blades (ZR = 5). Because Otsuka et al. (1996) and Watanabe et al. (1998) examine
only two-dimensional flows around foils, the cavity size per blade is treated as a cross sectional area Vcpb

(not a volume) and the scaling as Vc = ZRRVcpb/2 is used as a best estimate. Note that (K∗/2π, M∗) are
functions of the parameter λ = σ∗/2α, where σ∗ is the cavitation number at inlet to the propeller.

Figure 2: Steady cavity length and the quasi-static cavitation compliance and mass flow gain factor plotted against σ∗/2α
obtained by a free streamline theory (Watanabe et al. 1998) for solidity = 1.0, stagger angle β = 25◦ and ZR = 5.

The cavitation compliance K∗/2π varies from 0.018 to 0.172 for A∗/Ap = 2 and from 0.009 to 0.143 for
A∗/Ap = 10. The mass flow gain factor M∗ varies from 0.231 to 0.831 for A∗/Ap = 2 and from 0.140 to
0.777 for A∗/Ap = 10. These values are slightly smaller for the case with A∗/Ap = 10. In the dynamics
of other similar devices, the mass flow gain factor plays an important role in promoting instability. It is
therefore noteworthy that the largest mass flow gain factors occur for the smaller values of σ∗/2α and that
this occurs when the mean cavity length approaches the chord length. This accords with the observation
that instability can set in when the cavity length approached the chord of the propeller (Duttweiler and
Brennen 2002).


