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Impulse and Reaction Turbines

Impulse and reaction turbines evolved from the Pelton wheel turbine. The impulse turbine was similar
except that the buckets of the Pelton wheel were replaced by streamline blades as depicted in Figure 1.
These are driven by a jet that impacts the blades from one side and the reflected stream emerges from the
other. The reaction turbine is similar except that there is usually incident flow all around the periphery
whose direction is determined by a cascade or set of inlet guide vanes. The performance of an impulse or
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Figure 1: Sketch of a single stage impulse or reaction turbine rotor.

reaction turbine can be assessed by the same analysis as follows. As depicted in Figure 2, this incident
jet or flow of velocity, V', results in a force driving the turbine with a peripheral speed, U. In order to
apply Bernoulli’s equation and the momentum theorem to the flow through a set of blades, it is necessary
to view the flow in a frame of reference in which the blades are at rest and the flow is steady. In such
a relative frame, since both the entering and exiting jets are at the pressure of the containment vessel,
then by Bernoulli’s equation they would have the same velocity magnitude in the absence of gravity and
viscous, frictional effects. In order to take such viscous effects into account in the present analysis it is
assumed that these can be represented by the constant, C', where the relative velocity leaving blades is
—(C' times the relative velocity entering the blades and C' is a little less than unity. We will also denote
the mass flow rate through all stages in the direction perpendicular to U by m. It is convenient to assume
that all the angles o and (3 of the flows entering and leaving the blades are sufficiently small so that cos a
and cos # can be approximated by unity.

We begin with an analysis of the simplest impulse turbine consisting of a single set of rotor blades as
depicted in Figure 2. The velocities entering the rotor are denoted by the subscript 1 while those leaving
are denoted by the subscript 2. In order to use the steady flow version of the momentum theorem we
must utilize a control volume around the rotor which is moving with the rotor at the velocity U. Then the



Figure 2: Single stage of an impulse turbine.

velocities relative to that control volume in the U direction are approximately:
u =V and vn=V-U and vy =—Cvy =—-C(V-U)
The net momentum flux in the U direction exiting the rotor is therefore
m(ve —wv1) = —m(V = U)(1+ C)

and by the momentum theorem this must be equal to the force on the fluid in the U direction within the
rotor. Consequently the force on the rotor in the U direction, FFg, is

Fri=m(V-U)1+C)

It is conventional to define a blade efficiency, 71,.t0r, as the ratio of the power transmitted to the rotor,
FryU, to the available energy in the incoming flow, mV?/2. For this single rotor impulse turbine the blade

efficiency is therefore
2Fp U 2U U
votor = B — (14 0) {1 - 2
ot mV?2 V L+ ){ V}

For a representative value of C' equal to 0.9 this becomes

2U U
rotor = — | 1.9 = 1.9—

and we use this result below to compare turbines with various numbers of rotors.
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Reaction turbines often consist of multiple stages in order to take full advantage of all the energy in the
inlet flow. A two stage reaction turbine is depicted in Figure 3 and consists of a rotor followed by a stator
followed by a second rotor. The analysis begins with the same results for the first rotor as were detailed
above for the single rotor turbine. The velocities entering and leaving the subsequent stator will be denoted
by subscripts 3 and 4 respectively. Since the velocities relative to the stator are identical to those in the
non-rotating frame of reference it follows that

v3=u3=v2+U=U1+C)—-CV and vy =1uy = —Cuz =C*V —UC(1+C)

Now we turn attention to the second rotor. As with the first rotor, in order to use the steady flow version
of the momentum theorem, we must utilize a control volume around the second rotor which is moving with



Figure 3: A two-stage reaction turbine.

the second rotor at the velocity U. The velocities relative to that control volume in the U direction at the
entrance to and exit from the second rotor are denoted by subscripts 5 and 6 and are approximately

vs=uy—U=—Cuz =C*V —-U(1+C + C?) and v =—Cuvs=—-C*V+UC(1+C +C?)
The net momentum flux in the U direction exiting the second rotor is therefore
m(vs — vs) = —m[VC?*(1 +C) — U(1 + 2C + 2C* + C?)]

and this must be equal to the force on the fluid in the U direction within the second rotor. Consequently
the force on the second rotor in the U direction, Fgo, is

Fro =m[VC* 1+ C) — U(14 20 4 20? + C?)]
Adding Fry and Fry the total force, Fg, on the rotors in the U direction is therefore
Fr=m[VC?*(1+C)=U(14+2C+2C* +C*)+(V -U)(1+C)] = m[V(1+C+C*+C?)—U(2+3C+2C*+C?)]

Consequently the power, P, transmitted to the rotor is P = FrU. The blade efficiency of this two stage
impulse turbine, n2,0t0r, is defined as the ratio of this power to the available energy in the incoming flow
prior to the first stage namely mV?/2 so that the blade efficiency in this case is given by

M2rotor = 77 [(1 +C+C*+C°%) = (2430 +20% + 03)V}
For example for a value of C' equal to 0.9 this becomes

2U U
rotor — <, 3239 — 6849_

This is a maximum when U/V = 3.239/(2 x 6.849) = 0.236.



To add more stages we could simply continue the analysis detailed above. A second stator that followed
the second rotor would have entering and leaving velocities denoted by the subscripts 7 and 8 given by

vy =uy = v6+U = —C*V+U[1+C+C? +C7) and vg = ug = —Cuy = C*'V—-UC[1+C+C?+ 7

and these mean that the relative velocities entering (subscript 9) and leaving (subscript 10) a third rotor
would be

vg = ug—U = C*V —-U[1+C+C*+C*+CY and  vig=—Cuvg = —CV+UC[1+C+C?*+C*+CY
so that the net momentum flux in the U direction exiting a third rotor would be
m(vip — vg) = —m[VC*(1 4 C) — U(1 + 2C + 2C* + C?)]

This would be equal to the force on the fluid in the U direction within the third rotor. Consequently the
force on the third rotor in the U direction, Fr3, would be

Fra=m[VC* (14 C) = U(1 +2C +2C* + 2C° + 20" + C?)]
and the total force on a three stage rotor then becomes
Fr=m[V(1+C+C?+C?+C*+ C°) —U(3 +5C +4C? + 3C* + 2C* + C°)]
Therefore the blade efficiency for a three stage reaction turbine, 73,00, becomes

2U
Msrotor = (1+0+02+O3+O4+O5)—(3+5o+402+303+204+05)%

which, for a value of C' equal to 0.9, is

2U U
rotor — <, 469 - 1483_
N3rot v { V]

Comparing the one, two and three rotor turbine blade efficiencies, for example for U/V = 0.1, we find
Mrotor = 0.342, Norotor = 0.511, and nz,oter = 0.642 and therefore the blade efficiciences increase as more
rotors extract more energy from the flow.

A more appropriate comparison would be to examine the maximum blade efficiencies for each of these
turbines. For this purpose we differentiate the expressions for ni,otor, Norotor; and N3retor With respect to
U/V and then set those expressions to zero to find the values of U/V at which the blade efficiencies for
each of the one, two and three stage turbines are a maximum. Then we can evaluate the blade efficiencies
at those values of U/V. In the case of C' = 0.9 this leads to the following results:

(U/V)mar Nmax

nbsp;
One Rotor Reaction Turbine 0.500 0.95
Two Rotor Reaction Turbine  0.236 0.766
Three Rotor Reaction Turbine 0.158 0.742

Consequently the lighter the load on the turbine (the larger the value of U/V') the fewer the number of
stages needed and the higher the blade efficiency. On the other hand for larger loads and lower U/V" the
greater the number of stages needed to extract the energy from the inlet flow.



