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Propeller and Kaplan Turbines

Propeller and Kaplan turbines are axial flow machines in which the flow through the runner is predom-
inantly axial. A typical Kaplan turbine is shown in figure 1. The primary difference between the two is
that the runner blades in a propeller turbine are fixed while the runner blades of a Kaplan turbine have
an adjustable inclination.

Further examination of the fluid mechanics of these axial flow turbines requires definition of a thin cylin-
drical element of the flow through the runner at one particular radial location, r. Unwrapping that element
it becomes a linear cascade with an infinite array of identical blades as shown in figure 2.
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Figure 1: Schematic of a Kaplan turbine.

The flow through this linear cascade (and, by extension and integration, through the turbine impeller as a
whole) can be analyzed in a manner parallel to that used for an axial flow pump in section (Mbcb). Here
we provide just an outline of that approach using the control volume indicated in figure 2. Applying the
momentum theorem to this control volume, the forces, F, and Fj, imposed by the fluid on each blade (per
unit depth normal to the sketch), are given by

F, = (p—p2)h (Mdf1)
F, = phvy,(w;cosf —wscos () (Mdf2)

where, as a result of continuity, v,,1 = Vme = vm. To proceed, we define the vector mean of the relative
velocities, wy and ws, as having a magnitude wy; and a direction ), where by simple geometry

cot By = % (cot 31 + cot ) (Mdf3)

Wy = vm/ sin Bay (Mdf4)
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Figure 2: Schematic of a linear cascade showing the blade geometry, the periodic control volume and the definition of the
lift, L, and drag, D, forces on a runner blade.

It is conventional and appropriate (as discussed below) to define the lift, L, and the drag, D, components
of the total force on a blade, (F? + Fi)%, as the components normal and tangential to the vector mean

velocity, wy,. More specifically, as shown in figure 2,
L = —F,cosfBy+ Fysinfy (Mdf5)
D = FysinfBy + Fycos By (Mdf6)

where L and D are forces per unit depth normal to the sketch. Non-dimensional lift and drag coefficients
are defined as

1 1
CL = L/gpw?wc ; Cp= D/§pw?\40 (Mdf7)

Estimates of Cp and C}, then permit evaluation of the total head loss in the runner and therefore the
hydraulic performance of the runner. This will lead to a relation for the total head drop through the
impeller as a function of the flow rate.

To continue we resume the fluid mechanical analysis begun in section (Mdi) by observing that we could
modify the relation (Mdil) to include viscous losses by writing that

P1—p2 = AP% - g (w% - w%) (Mdfs)
where Ap? denotes the total pressure loss in the flow through the runner caused by viscous effects. In
frictionless flow, Ap? = 0, and the relation (Mdf8) becomes the Bernoulli equation in rotating coordinates
(equation (Mdil) and (Mdi2)) with r; = ro as is appropriate here. A dimensionless loss coefficient, f, will
be defined as

fo=Apy/pwis (Mdf9)



Equations (Mdf1) through (Mdf9) can be manipulated to obtain expressions for the lift and drag coefficients
as follows

Cp = 2fsinfBu/s (Mdf10)
Cp = 2| =Y gin gy, 4 L@ = cos B sin ) (Mdf11)
s 1) sin Gy

where s = ¢/h is the solidity, ¥ is the head coefficient, (p{ — p3)/pQ*R?, and ¢ is the flow coefficient,
U, / QR.

It also follows from the above relations that the head coefficient, v, is given by

Y = ¢(cot Br —cot 1) + i (Mdf12)

sin2 ﬂM

When there is no inlet swirl or prerotation so that tan ; = ¢, equation (Mdf12) becomes
1
p=—1+¢cotBy +f ¢2+Z(1+¢cotﬂg)2 (Mdf13)

In frictionless flow, when the discharge is parallel with the blades (82 = [(2), this has the form of the
characteristic equation (Mdi8).

Note also that the use of the relation (Mdf13) allows us to write the expression (Mdf11l) for the lift

coefficient as 5

S

Cr [2sin Bas(cot By — cot Bar) — f cos O] (Mdf14)

Figure 3 presents examples of typical head/flow characteristics resulting from equation (Mdf13) for some
chosen values of 35 and the friction coefficient, f. It should be noted that, in any real turbomachine, f
will not be constant but will vary substantially with the flow coefficient, ¢, which determines the angle of
incidence and other flow characteristics. Note that this typical family of performance curves essentially
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Figure 3: Calculated head/flow characteristics for some linear cascades.



mirrors the family of performance measurements presented in section (Mdj).

The observant reader will have noted that all of the preceding equations of this section involve only the
inclinations of the flow and not of the blades, which have existed only as ill-defined objects that achieve
the turning of the flow. In order to progress further, it is necessary to obtain a detailed solution of the
flow, one result of which will be the connection between the flow angles (i, f2) and the geometry of
the blades, including the blade angles (0, Bp1, Bp2). A large literature exists describing methods for the
solutions of these flows, but such detail is beyond the scope of this text.

To begin with, however, one can obtain some useful insights by employing our basic knowledge and under-
standing of lift and drag coefficients obtained from tests, both those on single blades (airfoils, hydrofoils)
and those on cascades of blades. One such observation is that the lift coefficient, C, is proportional to
the sine of the angle of attack, where the angle of attack is defined as the angle between the mean flow
direction, (35, and a mean blade angle, Gyy,. Thus

OL = my, sin(ﬂbM — ﬂM) (Mdf15)

where m, is a constant, a property of the blade or cascade geometry.

In the case of frictionless flow (f = 0), the expression (Mdf15) may be substituted into equation (Mdf14),
resulting in an expression for 3y, When this is used with equation (Mdf13), the following head/flow

characteristic results: '
2my,s sin Gy

w - 4+mLssinﬁbM

Note that, unlike equation (Mdf13), the head/flow characteristic of equation (Mdf16) is given in terms of
my, and practical quantities, such as the blade angle, (3;,/, and the inlet swirl or prerotation, vg; / Umn1-

{¢> (cot Boas + Ui) - 1} (MdFf16)

ml

It is also useful to consider the drag coefficient, Cp, for it clearly defines f and the viscous losses. Instead
of being linear with angle of attack, Cp will be an even function so an appropriate empirical result
corresponding to equation (Mdf15) would be

OD - ODO +mp sin2 (ﬂbM — ﬂM) (Mdf18)

where Cpg and mp are constants. Using typical values of Cpg and mp (for example, Cpy = 0.02 and
mp = 0 — 2) equation (Mdf18) allows estimates of Cp and hence of f using equation (Mdf10). These
values of f are ordinarily much larger at small flow coefficients and result in much larger head coefficients
at the low flows as exemplified by Figure 1 of section (Mdj).



