Nomenclature ### Roman Letters | a | Amplitude of wave-like disturbance | |--|---| | A | Cross-sectional area or cloud radius | | \mathcal{A} | Attenuation | | b | Thickness | | b | Power law index | | Ba | Bagnold number, $\rho_S D^2 \dot{\gamma}/\mu_L$ | | c | Concentration | | c | Speed of sound | | c_p | Specific heat at constant pressure | | c_s | Specific heat of solid or liquid | | c_v | Specific heat at constant volume | | c_{κ} | Phase velocity for wavenumber κ | | $C, C_1, C_2, C_R, etc.$ | Constants | | C | Compliance | | C | Damping coefficient | | C_D | Drag coefficient | | C_L | Lift coefficient | | $\overset{-}{C_{ij}}$ | Drag and lift coefficient matrix | | C_p | Coefficient of pressure | | C_{pmin} | Minimum coefficient of pressure | | d | Diameter | | d_{j} | Jet diameter | | d_o | Hopper opening diameter | | D | Particle, droplet or bubble diameter | | D | Mass diffusivity | | D_h | Hydraulic diameter | | D_m | Volume (or mass) mean diameter | | D_s | Sauter mean diameter | | D(T) | Determinant of the transfer matrix $[T]$ | | ${\cal D}$ | Thermal diffusivity | | e | Specific internal energy | | e_{ij} | Rate of strain tensor | | E | Young's modulus of elasticity | | E_{ij} | Strain tensor | | \mathcal{E} | Rate of exchange of energy per unit volume | | $f_{\hat{A}}$ | Frequency in Hz | | f | Radian frequency, $2\pi f$ | | f | Friction factor | | E_{ij} \mathcal{E} f \hat{f} f f f, f_i f_L, f_V | Body force per unit volume | | f_L, f_V | Liquid and vapor thermodynamic quantities | | | | F_i Force vector Fr Froude number \mathcal{F} Interactive force per unit volume g Acceleration due to gravity g_L, g_V Liquid and vapor thermodynamic quantities G Shear modulus of elasticity G_{Ni} Mass flux of component N in direction i G_N Mass flux of component N $egin{array}{lll} h & & & & & & & & \\ h^* & & & & & & & & \\ h & & & & & & & & \\ Heat & transfer & coefficient & & & & \\ \end{array}$ h Height H Total head, $p^T/\rho g$ H Height H A boundary layer profile parameter ΔH Total head difference He Henry's law constant Hm Haberman-Morton number, normally $g\mu^4/\rho S^3$ i, j, k, m, n Indices i Square root of -1 I Acoustic impulse \mathcal{I} Rate of transfer of mass per unit volume j_i Total volumetric flux in direction i j_{Ni} Volumetric flux of component N in direction i j_N Volumetric flux of component N k_L, k_V Liquid and vapor quantities K Hydraulic loss coefficient K Constant K^* Cavitation compliance Kc Keulegan-Carpenter number K_{ij} Added mass coefficient matrix K_n, K_s Elastic spring constants in normal and tangential directions Kn Knudsen number, $\lambda/2R$ \mathcal{K} Frictional constants ℓ Typical dimension ℓ Mean free path ℓ_t Turbulent length scale $\begin{array}{ccc} L & & \text{Length} \\ L & & \text{Inertance} \\ \mathcal{L} & & \text{Latent heat} \\ m & & \text{Mass flow rate} \\ \dot{m} & & \text{Mass flow rate} \end{array}$ m_G Mass of gas in bubble m_p Mass of particle M Mass Mach number M^* Mass flow gain factor M_{ij} Added mass matrix \mathcal{M} Molecular weight Ma Martinelli parameter n Number of particles per unit volume n Normal coordinate n Unit normal vector \dot{n} Number of events per unit time n_i Unit vector in the i direction N(R), N(D), N(v) Particle size distribution functions N^* Number of sites per unit area Nu Nusselt number, hD_h/k_L $\begin{array}{ccc} p & & \text{Pressure} \\ p^T & & \text{Total pressure} \end{array}$ p_a Radiated acoustic pressure p_G Partial pressure of gas p_s Sound pressure level p_V Vapor pressure P Perimeter P Power P Perimeter $\begin{array}{ccc} Pe & ext{Peclet number, usually } WR/\alpha_C \\ Pm & ext{Prandtl-Meyer function, in degrees} \end{array}$ Pr Prandtl number, $\rho \nu c_p/k$ q General variable \tilde{q}^n Vector of fluctuating quantities q Heat flux per unit surface area q_i Heat flux vector Δq Heat added per unit mass \mathcal{Q} Rate of heat production per unit length \mathcal{Q} Rate of heat transfer or release per unit mass \mathcal{Q}_{ℓ} Rate of heat addition per unit length of pipe r, r_i Radial coordinate and position vector $\begin{array}{ll} r_d & \text{Impeller discharge radius} \\ r, \theta, z & \text{Cylindrical coordinates} \\ r, \theta, \phi & \text{Spherical coordinates} \end{array}$ R Sphere, bubble, particle or droplet radius R Resistance R_k^* Resistance of component, k R_B Equivalent volumetric radius, $(3\tau/4\pi)^{\frac{1}{3}}$ R_e Equilibrium radius Re Reynolds number \mathcal{R} Gas constant S Coordinate measured along a streamline or pipe centerline s, n Tangential and normal coordinates s Laplace transform variable s Specific entropy S Surface tension S_D Surface of the disperse phase $\begin{array}{ccc} St & Stokes & number \\ Str & Strouhal & number \end{array}$ t Time t_c Binary collision time t_u Relaxation time for particle velocity t_T Relaxation time for particle temperature T Temperature T Granular temperature T A boundary layer profile parameter T_{ij} Transfer matrix T Torque coefficient u Fluid velocity u, v, w Fluid velocity components in Cartesian coordinates u_r, u_θ, u_z Velocities in cylindrical coordinates u_r, u_θ, u_ϕ Velocities in spherical coordinates \underline{u}, u_i Fluid velocity vector u_{Ni} Velocity of component N in direction i u_r, u_{θ} Velocity components in polar coordinates u_d A non-dimensional velocity $\begin{array}{ccc} u_s & & \text{Shock velocity} \\ u^* & & \text{Friction velocity} \end{array}$ U, U_i Fluid velocity and velocity vector in absence of particle U Reference or upstream fluid velocity U_{∞} Velocity of upstream uniform flow \mathcal{U} Body force potential v Volume of particle, droplet or bubble V, V_i Absolute velocity and velocity vector of particle V Volume $egin{array}{ll} V & & ext{Control volume} \\ \dot{V} & ext{Volume flow rate} \\ \end{array}$ w Dimensionless relative velocity, W/W_{∞} w Work done per unit mass Δw Increment of work done per unit mass W, W_i Relative velocity of particle and relative velocity vector W_{∞} Terminal velocity of particle W_p Typical phase separation velocity W_t Typical phase mixing velocity \dot{W} Rate of work done on the fluid We Weber number, $2\rho W^2 R/S$ \mathcal{W} Rate of work done per unit mass x, y, z Cartesian coordinates x Mass fraction X, Y, Z Displacements in x, y, z directions x_i Position vector X_i Displacement vector \mathcal{X} Mass quality y Elevation # Greek Letters | | Volume fraction | |---|---| | α | Thermal diffusivity of liquid | | α_L | v - | | β | Volume quality | | $\overset{\gamma}{\cdot}$ | Ratio of specific heats of gas | | $egin{array}{c} \gamma \ \dot{\gamma} \ \delta \end{array}$ | Shear rate | | | Boundary layer thickness | | δ_d | Damping coefficient | | δm | Fractional mass | | δ_T | Thermal boundary layer thickness | | δ_2 | Momentum thickness of the boundary layer | | δ_{ij} | Kronecker delta: $\delta_{ij} = 1$ for $i = j$; $\delta_{ij} = 0$ for $i \neq j$ | | ϵ | Fractional volume | | ϵ | Coefficient of restitution | | ϵ | Rate of dissipation of energy per unit mass | | ζ | Attenuation or amplification rate | | η | Efficiency | | η | Bubble population per unit liquid volume | | θ | Angular coordinate or direction of velocity vector | | θ | Reduced frequency | | $ heta_w$ | Hopper opening half-angle | | κ | Bulk modulus of compressibility | | κ | Wavenumber | | κ_L, κ_G | Shape constants | | λ | Wavelength | | λ | Mean free path | | λ | Kolmogorov length scale | | Λ | Integral length scale of the turbulence | | Λ | Lame constant | | Λ | Second coefficient of viscosity | | μ | Dynamic viscosity | | μ^* | Coulomb friction coefficient | | ν | Kinematic viscosity | | ν | Mass-based stoichiometric coefficient | | ξ | Particle loading | | ho | Density of fluid | | ϕ | Velocity potential | | ϕ | Internal friction angle | | $\dot{\phi}$ | Flow coefficient, $j/\Omega r_d$ | | $\phi_L^2, \phi_G^2, \phi_{L0}^2$ | Martinelli pressure gradient ratios | | φ | Fractional perturbation in bubble radius | | Φ | Rate of dilation | | Φ^* | Dilation | | | | ψ Stream function ψ Head coefficient, $\Delta p^T/\rho\Omega^2 r_d^2$ σ Cavitation number σ_i Inception cavitation number σ_{ij} Stress tensor σ_{ii}^D Deviatoric stress tensor Σ Poisson's ratio $\Sigma(T)$ Thermodynamic parameter au Kolmogorov time scale au_i Interfacial shear stress au_n Normal stress au_s Shear stress au_w Wall shear stress au Radian frequency $\begin{array}{lll} \omega_a & & \text{Acoustic mode frequency} \\ \omega_i & & \text{Instability frequency} \\ \omega_n & & \text{Natural frequency} \end{array}$ ω_m Cloud natural frequencies ω_m Manometer frequency ω_p Peak frequency ω Magnitude of vorticity ω_i Vorticity vector ω_{ij}^* Rate of rotation tensor $\underline{\omega}, \omega_i$ Vorticity vector ω_n Natural frequency Ω Rotating frequency (radians/sec) Ω_j Unit direction vector ???????? Ω_{ij} Rotation tensor ### Subscripts On any variable, Q: Q_o Initial value, upstream value or reservoir value Q_1, Q_2, Q_3 Components of Q in three Cartesian directions Q_1, Q_2 Values upstream and downstream of a component or flow structure Q_{∞} Value far from the particle or bubble Q_A Pertaining to a general phase or component, A Q_b Pertaining to the bulk Q_B Pertaining to a general phase or component, B Q_B Value in the bubble Q_c Critical values and values at the critical point Q_C Pertaining to the continuous phase or component, C Q_C Critical value Q_D Denotes design value Q_D Pertaining to the disperse phase or component, D Q_e Equilibrium value or value on the saturated liquid/vapor line | Q_e | Effective value or exit value | |--------------|---| | Q_E | Equilibrium value | | Q_G | Pertaining to the gas phase or component | | Q_i | Components of vector Q | | Q_{ij} | Components of tensor Q | | Q_L | Pertaining to the liquid phase or component | | Q_m | Maximum value of Q | | Q_M | Mean or maximum value | | Q_N | Nominal conditions | | Q_N | Pertaining to a general phase or component, N | | Q_O | Pertaining to the oxidant | | Q_r | Component in the r direction | | Q_s | A surface, system or shock value | | Q_S | Pertaining to the solid particles | | Q_S | Pertaining to the surface | | Q_V | Pertaining to the vapor phase or component | | Q_w | Value at the wall | | Q_{θ} | Component in the θ direction | #### Superscripts and other qualifiers | On any variable, Q : | | |---|---| | Q_* | Throat values | | Q', Q'', Q^* | Used to differentiate quantities similar to Q | | Q', Q'', Q^* \bar{Q} | Mean value of Q or amplitude of Q or complex conjugate of Q | | \grave{Q} | Small perturbation in Q | | δQ | Small change in Q | | δQ $ ilde{Q}$ $ ilde{Q}$ $ ilde{Q}$ | Complex amplitude of oscillating Q | | \dot{Q} | Time derivative of Q | | \ddot{Q} | Second time derivative of Q | | $\hat{\hat{Q}}(s)$ \check{Q} | Laplace transform of $Q(t)$ | | $reve{Q}$ | Coordinate with origin at image point | | $Re\{Q\}$ | Real part of Q | | $Im\{Q\}$ | Imaginary part of Q | #### Units In most of this book, the emphasis is placed on the nondimensional parameters that govern the phenomenon being discussed. However, there are also circumstances in which we shall utilize dimensional thermodynamic and transport properties. In such cases the International System of Units will be employed using the basic units of mass (kg), length (m), time (s), and absolute temperature (K).