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Solution to Problem 116B

Purely radial flow requires that uθ = uφ = 0 and that ∂/∂θ = 0 and ∂/∂φ = 0. Moreover the continuity equation is
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Since the flow is purely radial, this reduces to:
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Integrating with respect to r:
r2 ur = f(t)

Since at r = R(t), ur = dR/dt it follows that
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For purely radial flow, Euler’s equations in the θ and φ directions are automatically satisfied. In the r direction, Euler’s
equation reduces to:
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Substituting the expression derived for ur:
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Separating and integrating:
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and therefore
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The unknown integration function c(t) is evaluated knowing the pressure as r → ∞, which is denoted by p∞:

p(r → ∞, t) = c(t) = p∞

and therefore
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The pressure inside the bubble, pB , equal to p(r, t) evaluated at r = R, then completes the application of the boundary
conditions:
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and therefore
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This is known as the Rayleigh equation for bubble growth and collapse; it connects the pressures at infinity and inside the
bubble with the radius/time history, R(t).


