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Solution to Problem 116B

Purely radial flow requires that ug = uy = 0 and that 9/06 = 0 and 9/9d¢ = 0. Moreover the continuity equation is

Since the flow is purely radial, this reduces to:
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Integrating with respect to r:
2wy = f(t)
Since at r = R(t), v, = dR/dt it follows that
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For purely radial flow, Euler’s equations in the 6 and ¢ directions are automatically satisfied. In the r direction, Euler’s

equation reduces to:
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Substituting the expression derived for u,.:
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Separating and integrating:
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The unknown integration function c(t) is evaluated knowing the pressure as 7 — oo, which is denoted by poo:

and therefore
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The pressure inside the bubble, pg, equal to p(r,t) evaluated at r = R, then completes the application of the boundary
conditions: ) )
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This is known as the Rayleigh equation for bubble growth and collapse; it connects the pressures at infinity and inside the
bubble with the radius/time history, R(¢).

and therefore

p(?“, t) =p (%

pp =p(R,t)=p + Poo

and therefore

PB = Poo =P




