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Solution to Problem 117A

Euler’s momentum equations for the inviscid planar flow of an incompressible fluid under the action of conservative body
forces (fy = OF/0x and f, = OF/0y where F is the body force potential) are:
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and, since the flow is incompressible, the continuity equation is:
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To eliminate the pressure from the two momentum equations, take 9/9y of the first or £ momentum equation and 9/9z of
the second:
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Subtract the two equations and group terms:
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Finally, substitute in w = du/dy — dv/dx and using the continuity equation, du/0x + dv/dy = 0 to obtain:
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This equation tells us that Dw/Dt = 0 and therefore the vorticity associated with a particular fluid element does not change
as the fluid element moves along in the flow.



