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Solution to Problem 132A:

To prove this we replace the independent variables x and y by the variable z = x + iy and its complex
conjugate z = x− iy so that in general f(z, z) will be a function of both z and z. Moreover since
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If we then examine the derivative:
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because of the Cauchy-Riemann relations,
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Then, since ∂f/∂z = 0, it follows that f is only a function of z and not of z. It therefore follows that any
function f(z) that satifies the Cauchy-Riemann relations, therefore satisfies ∇2φ = 0 and ∇2ψ = 0 and
therefore constitutes the solution to a planar potential flow.


