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Solution to Problem 132A:

To prove this we replace the independent variables x and y by the variable z = x + 2y and its complex

conjugate zZ = x — iy so that in general f(z,%) will be a function of both z and Z. Moreover since
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If we then examine the derivative:
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and therefore
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because of the Cauchy-Riemann relations,
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Then, since 0f/0z = 0, it follows that f is only a function of z and not of Z. It therefore follows that any
function f(z) that satifies the Cauchy-Riemann relations, therefore satisfies V2 = 0 and V23 = 0 and

therefore constitutes the solution to a planar potential flow.



