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Solution to Problem 134A:

la] Using the expansions
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where all the derivatives refer to the values at the node 0. Since the velocities normal to the wall at the
node 0 are zero, it follows that both d¢/0x and d¢/Jy at the node 0 are zero. Then it follows that
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and the Laplace equation for ¢ is approximated by
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where the error is O{h?}.
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It follows that
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[c] The numerical solution, ¢(z,y), is obtained by finding values at each of the nodes that satisfy a numerical
version of the Laplace equation, for example:

G1+ P2+ @3+ Qs —4gy = 0 (11)

along with the equivalent versions at the boundary nodes. Once that solution has been obtained and the
the values at each node have been determined, the velocities u = d¢/0x and v = d¢/Jy at those nodes

can be evaluated using
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Then, using Bernoulli’s equation, the pressure, pg, at each node 0 (elevation, z5) may be obtained using
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where p., U and Z are the pressure, velocity and elevation at some reference point in the flow.



