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Solution to Problem 147A

1.) First determine the kinematic boundary condition on the components of the velocities normal to the interface in the
liquid and vapor phases, uLn and uV n. Since any mass transfer across the interface must conserve mass, the mass fluxes on
either side must match:

ṁL = ṁV

ρLuLn = ρV uvn

2.) Find the kinematic boundary condition on the components of the velocities tangential to the interface in the liquid and
vapor phases, uLs and uV s. Just as at a solid boundary, the no-slip condition must apply at the interface and the tangential
velocities must match:

uLs = uV s

3.) Find the dynamic boundary condition on the shear stresses in the liquid and vapor phases, σLsn and σV sn. Consider the
momentum theorem in the s-direction: ∑

Fs =
∫

ρus(�u · �n)dA

and apply this to an infinitesimally thin control volume of area, A, on the interface. The thinness of the control volume
means that we can neglect all forces and momentum fluxes through the side walls of the CV. Keep in mind that there will
be tangential momentum fluxes that cross the two non-infinitesmal sides of the control volume.

σV snA − σLsnA = ρV uV suV nA − ρLuLsuLnA

But since ρLuLn = ρV uV n from part (1) and uLs = uV s from part (2), the RHS is equal to zero so the shear stresses across
the interface must match:

σLsn = σV sn

µL
∂uLs

∂n
= µV

∂uV s

∂n

4.) Find the dynamic boundary condition on the normal stresses in the liquid and vapor phases, σLnn and σV nn. For the
normal stresses, we consider the momentum theorem applied in the normal direction using the same control volume used in
part (3). ∑

Fn =
∫

ρun(�u · �n)dA

σV nnA − σLnnA = −ρLu2
LnA + ρV u2

V nA

⇒ σV nn − σLnn = ρV u2
V n − ρLu2

Ln

Aside: How much mass transfer (evaporation/condensation/diffusion) will have to occur to significantly affect the pressure
difference across the interface?

The pressure (the negative of the normal stress, p = −σnn) difference across the interface is given by

pL − pV = ρV u2
V n − ρLu2

Ln

= ρV u2
V n − ρ2

V

ρL
u2

V n

= ρV u2
V n

(
1 − ρV

ρL

)

≈ ρV u2
V n



The second step uses the result from part (1). The last step makes use of the fact that the density of a vapor is usually much
less than that of a liquid, ρV

ρL
� 1. It follows that

pL

pV
− 1 =

ρV u2
V n

pV

=
ρV u2

V n

ρV RTV

∝ M2
V

where MV is the Mach number of the normal flow in the vapor. The second step used the ideal gas law and the third
utilized the fact that the speed of sound in the vapor is proportional to the square-root of RTV . This demonstrates that for
any substantial pressure difference across the interface, the Mach number of the normal vapor flow must be some significant
fraction of one. A Mach number such as this would require an intense level of evaporation or condensation.


