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Solution to Problem 160C:

The equilibrium equations (the equations of motion in terms of the stresses) yield (for y > 0):
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Since the flow is planar and fully developed v = 0 and ∂u/∂x = 0 and it follows from the second equation
above that ∂p/∂y = 0. Therefore p is a function only of x and the quantity −dp/dx may be regarded as
the imposed pressure gradient. It also follows from the first equation that

∂

∂y

{(
∂u

∂y

)2
}

= −1

c

∂p

∂x
=

1

c

(
−dp

dx

)
(3)

and since u is a function only of y we may integrate this relation and use the boundary conditions (1) that
∂u/∂y = 0 on y = 0 and (2) that u = 0 on y = h/2 to obtain
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The mean velocity, u, is
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