
An Internet Book on Fluid Dynamics

Solution to Problem 206A

The U-tube shown in the figure has one side of length, L, and cross-sectional area, A, and the other side with the same length
but a cross-sectional area, 2A:
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Assume no friction within the pipe and an incompressible fluid. During the oscillation, assume the level of the fluid in the
left hand side of the tube (point (1)) rises a distance y1 = x. Because of volume conservation, the level at the right-hand
side (point (3)) will drop to a level y2 = −x/2. The velocity and acceleration on the left hand side (denoted as positive in
the direction from point (3) to point (1)) are u1 = dx/dt and a1 = d2x/dt2 while these quantities on the right hand side are
u2 = 0.5 dx/dt and a2 = 0.5 d2x/dt2.

Denote the point where the area changes abruptly as point (2). Then the total pressure difference P1−P3 can be determined
by applying the unsteady Bernoulli equation twice between point (1) and point (2) and between point (3) and point (2):
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Adding the two equations gives:
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But also by definition the difference between the total pressures at points (1) and (2) is
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For small amplitudes of motion the kinetic energy terms involving 0.5ρu2
1 and 0.5ρu2

3 are negligible and since y1 = x and
y3 = −x/2 it follows that:
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which is similar to a pendulum. The natural frequency of the oscillation inside the tube is therefore:
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