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Solution to Problem 210A:

The flow in the pipeline will be governed by the unsteady Bernoulli equation so that
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where AH is the head rise across the pump and the head loss in the pipeline, ) is the volume flow rate
through the pipeline, A is the cross-sectional area of the pipeline, k is the loss coefficient for the pipeline,

p is the fluid density, ¢ is time and ¢ is the acceleration due to gravity. With k = fL/D (f is the friction
factor and L and D are the length and diameter of the pipe) this can be written as
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where
= B~ s s?/m* and Cy = L 4841 s*/m? (3)
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Question (i): At Q =0, AH = C; dQ/dt therefore
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Question (ii): The asymptotic flow rate, Q(o0):
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e Pump(b): Need to solve the quadratic equation
AH = 200 —1000Q = C, Q* (7)
which yields Q(o0) = 0.125 m?/s
Question (iii): To find Q(¢) : The following equation applies:
d
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and therefore the integral that must be evaluated to determine Q(t) is
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where ¢ is a dummy variable.



e Pump(a): For pump(a) this becomes
t =

e Pump(a): For pump(b) this becomes
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These may require numerical integration.
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