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Solution to Problem 210A:

The flow in the pipeline will be governed by the unsteady Bernoulli equation so that
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where ΔH is the head rise across the pump and the head loss in the pipeline, Q is the volume flow rate
through the pipeline, A is the cross-sectional area of the pipeline, k is the loss coefficient for the pipeline,
ρ is the fluid density, t is time and g is the acceleration due to gravity. With k = fL/D (f is the friction
factor and L and D are the length and diameter of the pipe) this can be written as
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where
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= 4841 s2/m5 (3)

Question (i): At Q = 0, ΔH = C1 dQ/dt therefore
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dQ

dt
=

ΔH

C1
=

200

24336
= 0.0082 m3/s2 (4)
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= 0.0082 m3/s2 since Q=0 (5)

Question (ii): The asymptotic flow rate, Q(∞):

• Pump(a)
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= 0.203 m3/s (6)

• Pump(b): Need to solve the quadratic equation

ΔH = 200 − 1000Q = C2 Q2 (7)

which yields Q(∞) = 0.125 m3/s

Question (iii): To find Q(t) : The following equation applies:
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and therefore the integral that must be evaluated to determine Q(t) is
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where q is a dummy variable.



• Pump(a): For pump(a) this becomes
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• Pump(a): For pump(b) this becomes
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These may require numerical integration.


