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Solution to Problem 230A

Continuity:
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Since the flow is planar and incompressible this simplifies to:
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Since the velocity, v, normal to the plate is zero everywhere in the flow it follows from continuity that
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so u is only a function of y, u = u(y).

Navier-Stokes:
x-direction:
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Since the flow is planar, since v = 0 and g—; = 0, and since the pressure is constant, this becomes:
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We use separation of variables to solve this partial differential equation. Assume

u(y,t) =Y (y)T(t)

Substituting this into the partial differential equation and rearranging, the result can be written as a term which is a function
only of y equal to a term which is a function only of ¢. It follows that both must be equal to a simple constant, A:
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The equation for ¢ is then:
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and the solution to this is:
T(t) = creM
The equation for y is:
d*Y
- _Py_y
dy*

and the solution to this is:

Y(y) = 62@\//’)‘/” Y4 036_\/”’\/” y
The boundary conditions at the plate and as y — oo are respectively
uw(0,t) =U(t) = Uer*

and
u(y — 00,t) =0

The second condition yields ca = 0. It follows that the solution for u(y,t) is:
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where ¢4 = c1c3. Applying the no-slip boundary condition at the surface of the plate:
u(0,1) = cget = Uek?

so the values of the unknown constant ¢4, = U and A = k are now determined. This yields a velocity profile:
u(y,t) = Uekte_\/m v

where v is the kinematic viscosity v = p/p. The vorticity, w(y, t), is given by
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The boundary layer thickness, §, is defined as that distance from the plate where the velocity is 10% of the plate velocity:
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