An Internet Book on Fluid Dynamics

Solution to Problem 352 E

The Mach wave that results from attaching a slender probe to the front of the wedge allows us to determine the Mach number of the flow:

 $M = \frac{1}{\sin \mu} = \frac{1}{\sin 45^{\circ}} = \sqrt{2}$

Based on this Mach number and the observed oblique shock angle, β , of 60°, we find the deflection angle, θ , from the θ - β -M relation:

$$\tan \theta = 2 \cot \beta \left[\frac{M^2 \sin^2 \beta - 1}{M^2 (\gamma + \cos 2\beta) + 2} \right]$$
$$\Rightarrow \theta = 8.64^{\circ}$$

The wedge angle, δ , will be twice this deflection angle.

$$\delta = 2\theta = 17.3^{\circ}$$